OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 23530–23535

Phosphor converted LEDs with omni-directional-reflector coating

Jim-Yong Chi, Ji-Siao Chen, Chuan-Yu Liu, Cheng-wen Chu, and Kuo-Hsien Chiang  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 23530-23535 (2009)
http://dx.doi.org/10.1364/OE.17.023530


View Full Text Article

Enhanced HTML    Acrobat PDF (303 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A packaging scheme utilizing omni-directional reflective (ODR) optical coating is described to enhance the light extraction of near UV excited, phosphor-converted LEDs. A simple 1D model was developed to analyze the spectra of the extracted light measured with an integration-sphere as a function of phosphor layer concentration and thickness. Quantitative determination of the absorption coefficients at the pump and fluorescent light wavelength along with the conversion coefficient of phosphors were obtained. The reflection of the ODR film and the back reflector are also characterized. These parameters are then used for efficiency optimization of the present packaging scheme. A maximum enhancement of 40% can be expected with the materials and the configuration used in the present work.

© 2009 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: October 9, 2009
Revised Manuscript: November 16, 2009
Manuscript Accepted: November 18, 2009
Published: December 8, 2009

Citation
Jim-Yong Chi, Ji-Siao Chen, Chuan-Yu Liu, Cheng-wen Chu, and Kuo-Hsien Chiang, "Phosphor converted LEDs with omni-directional-reflector coating," Opt. Express 17, 23530-23535 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-23530


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Narukawa, M. Sano, M. Ichikawa, S. Minato, T. Sakamoto, T. Yamada, and T. Mukai, “Improvement of Luminous Efficiency in White Light Emitting Diodes by Reducing a Forward-bias Voltage,” Jpn. J. Appl. Phys. 46, Part 2, 36–40 (2007). [CrossRef]
  2. J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, and G. C. Kim, “Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor,” Appl. Phys. Lett. 84(15), 2931 (2004). [CrossRef]
  3. C.-H. Kuo, J.-K. Sheu, S.-J. Chang, Y.-K. Su, L.-W. Wu, J.-M. Tsai, C. H. Liu, and R. K. Wu, “n-UV+Blue/Green /Red White Light Emitting Diode Lamps,” Jpn. J. Appl. Phys. 42,(Part 1,No. 4B), 2284–2287 (2003). [CrossRef]
  4. J. K. Park, M. A. Lim, C. H. Kim, H. D. Park, J. T. Park, and S. Y. Choi, “White light-emitting diodes of GaN-based Sr2SiO4: Eu and the luminescent properties,” Appl. Phys. Lett. 82(5), 683 (2003). [CrossRef]
  5. Y.-D. Huh, J.-H. Shim, Y. Kim, and Y. R. Do, “Optical properties of three-band white light emitting diodes,” J. Electrochem. Soc. 150(2), H57 (2003). [CrossRef]
  6. M. H. Crawford, “LEDs for Solid-State Lighting: Performance Challenges and Recent Advances,” IEEE J Sel. Top. Quantum Electron. 15, 1026 (2009).
  7. C. C. Chang, R. Chern, C. C. Chang, C. Chu, J. Y. Chi, J. Su, I. Chan, and J. T. Wang, “Monte Carlo Simulation of Optical Properties of Phosphor-Screened Ultraviolet Light in a White Light-Emitting Device,” Jpn. J. Appl. Phys. 44(8), 6056–6061 (2005). [CrossRef]
  8. E.-Y. Kang, E. Wu, and D.-M. Wang, “Modeling white light-emitting diodes with phosphor layers,” Appl. Phys. Lett. 89(23), 231102 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited