OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 23544–23555

Tunable guided-mode resonances in coupled gratings

Hahn Young Song, Sangin Kim, and Robert Magnusson  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 23544-23555 (2009)
http://dx.doi.org/10.1364/OE.17.023544


View Full Text Article

Enhanced HTML    Acrobat PDF (721 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a rigorous numerical analysis on tunable characteristics of guided-mode resonances (GMRs) in coupled gratings. Two schemes of strong and negligible evanescent coupling of guided modes are treated. Both show wide range tunability. In the case of strong evanescent coupling, independent control of the center wavelength and the linwidth of the resonance is obtained via variations of a gap size between the gratings and lateral alignment conditions. We believe that this characteristic will provide a useful means to realize a tunable filter in conjunction with micro/nano-electromechanical system technologies. We also present a generalized theoretical analysis on the tunable characteristics of the GMRs in coupled gratings, which is qualitatively in good agreement with the numerical analysis.

© 2009 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(120.2440) Instrumentation, measurement, and metrology : Filters
(310.2790) Thin films : Guided waves

ToC Category:
Diffraction and Gratings

History
Original Manuscript: October 13, 2009
Revised Manuscript: November 25, 2009
Manuscript Accepted: December 2, 2009
Published: December 8, 2009

Citation
Hahn Young Song, Sangin Kim, and Robert Magnusson, "Tunable guided-mode resonances in coupled gratings," Opt. Express 17, 23544-23555 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-23544


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Vincent and M. Nerviere, “Corrugated dielectric waveguides: A numerical study of the second-order stop band,” Appl. Phys. (Berl.) 20(4), 345–351 (1979). [CrossRef]
  2. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992). [CrossRef]
  3. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002). [CrossRef]
  4. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004). [CrossRef] [PubMed]
  5. C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chan-Hasnain, “Ultrabroadband mirror using low-index cladding subwavelength grating,” IEEE Photon. Technol. Lett. 16(2), 518–520 (2004). [CrossRef]
  6. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16(5), 3456–3462 (2008). [CrossRef] [PubMed]
  7. K. J. Lee, R. Lacomb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layser guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett. 20(22), 1857–1859 (2008). [CrossRef]
  8. R. Magnusson and M. Shokooh-Saremi, “Widely tunable guided-mode resonance nanoelectromechanical RGB pixels,” Opt. Express 15(17), 10903–10910 (2007). [CrossRef] [PubMed]
  9. D. Wawro, S. Tibuleac, and R. Magnusson, “Optical waveguide-mode resonant biosensors Optical,” Imaging Sensors and Systems for Homeland Security Applications, (Springer New York, 2006).
  10. M. Borodisky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, “Spontaneous emission extraction and Purcell enhancement from thin-Film 2-D photonic crystal,” J. Lightwave Technol. 17(11), 2096–2112 (1999). [CrossRef]
  11. H. Y. Ryu, Y. H. Lee, R. L. Sellin, and D. Bimberg, “Over 30-fold enhancement of light extraction from free-standing photonic crystal slabs with InGaAs quantum dots at low temperature,” Appl. Phys. Lett. 79(22), 3573–3575 (2001). [CrossRef]
  12. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999). [CrossRef]
  13. W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82(13), 1999–2001 (2003). [CrossRef]
  14. W. Suh and S. Fan, “Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top reflection characteristics,” Opt. Lett. 28(19), 1763–1765 (2003). [CrossRef] [PubMed]
  15. Y. Ding and R. Magnusson, “MEMS tunable resonant leaky mode filters,” IEEE Photon. Technol. Lett. 18(14), 1479–1481 (2006). [CrossRef]
  16. W. Nakagawa and Y. Fainman, “Tunable optical nanocavity based on modulation of near-field coupling between subwavelength periodic nanostructures,” IEEE J. Sel. Top. Quantum Electron. 10(3), 478–483 (2004). [CrossRef]
  17. H. A. Haus, Waves and Field in Optoelectronics (Englewood Cliffs, NJ: Prentice-Hall, 1984).
  18. M. Foresti, L. Menez, and A. V. Tishchenko, “Modal method in deep metal-dielectric gratings: the deceive role of hidden modes,” J. Opt. Soc. Am. 23(10), 2501 (2006). [CrossRef]
  19. Y. Kanamori, T. Kitani, and K. Hane, “Control of guided resonance in a photonic crystal slab using microelectromechanical actuators,” Appl. Phys. Lett. 90(3), 031911 (2007). [CrossRef]
  20. Y. Ding and R. Magnusson, “Use of nondegenerate resonant leaky modes to fashion diverse optical spectra,” Opt. Express 12(9), 1885–1891 (2004). [CrossRef] [PubMed]
  21. S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett. 26(9), 584–586 (2001). [CrossRef] [PubMed]
  22. Y. Ding and R. Magnusson, “Doubly resonant single-layer bandpass optical filters,” Opt. Lett. 29(10), 1135–1137 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited