OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 23589–23602

Photon pair generation in birefringent optical fibers

Brian J. Smith, P. Mahou, Offir Cohen, J. S. Lundeen, and I. A. Walmsley  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 23589-23602 (2009)
http://dx.doi.org/10.1364/OE.17.023589


View Full Text Article

Enhanced HTML    Acrobat PDF (658 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study both experimentally and theoretically the generation of photon pairs by spontaneous four-wave mixing (SFWM) in standard birefringent optical fibers. The ability to produce a range of two-photon spectral states, from highly correlated (entangled) to completely factorable, by means of cross-polarized birefringent phase matching, is explored. A simple model is developed to predict the spectral state of the photon pair which shows how this can be adjusted by choosing the appropriate pump bandwidth, fiber length and birefringence. Spontaneous Raman scattering is modeled to determine the tradeoff between SFWM and background Raman noise, and the predicted results are shown to agree with experimental data.

© 2009 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: September 15, 2009
Revised Manuscript: December 4, 2009
Manuscript Accepted: December 4, 2009
Published: December 9, 2009

Citation
Brian J. Smith, P. Mahou, Offir Cohen, J. S. Lundeen, and I. A. Walmsley, "Photon pair generation in birefringent optical fibers," Opt. Express 17, 23589-23602 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-23589


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. E. Harris, "Chirp and Compress: Toward Single-Cycle Biphotons," Phys. Rev. Lett. 98, 063602 (2007). [CrossRef] [PubMed]
  2. K. A. O’Donnell and A. B. U’Ren, "Observation of ultrabroadband, beamlike parametric downconversion," Opt. Lett. 32, 817-819 (2007). [CrossRef] [PubMed]
  3. M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, "Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion," Phys. Rev. Lett. 100, 183601 (2008). [CrossRef] [PubMed]
  4. V. Giovannetti, S. Lloyd, and L. Maccone, "Quantum-enhanced positioning and clock synchonization," Nature 412, 417-419 (2001). [CrossRef] [PubMed]
  5. V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, "Generating Entangled Two-Photon States with Coincident Frequencies," Phys. Rev. Lett. 88, 183602 (2002). [CrossRef] [PubMed]
  6. O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kartner, "Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching," Phys. Rev. Lett. 94, 083601 (2005). [CrossRef] [PubMed]
  7. J. D. Franson, "Nonlocal cancellation of dispersion," Phys. Rev. A 45, 3126-3132 (1992). [CrossRef] [PubMed]
  8. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, "Dispersion cancellation in a measurement of the single-photon propagation velocity in glass," Phys. Rev. Lett. 68, 2421-2424 (1992). [CrossRef] [PubMed]
  9. R. Erdmann, D. Branning,W. Grice and I. A. Walmsley, "Restoring dispersion cancellation for entangled photons produced by ultrashort pulses," Phys. Rev. A 62, 053810 (2000). [CrossRef]
  10. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, "Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography," Phys. Rev. Lett. 91, 083601 (2003). [CrossRef] [PubMed]
  11. J. D. Franson, "Bell Inequality for Position and Time," Phys. Rev. Lett. 62, 2205-2208 (1989). [CrossRef] [PubMed]
  12. Y. H. Shih, A. V. Sergienko, and M. H. Rubin, "Einstein-Podolsky-Rosen state for space-time variables in a two-photon interference experiment," Phys. Rev. A 47, 1288-1293 (1992). [CrossRef]
  13. P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, "High-visibility interference in a Bell-inequality experiment for energy and time," Phys. Rev. A 47, R2472-R2475 (1993). [CrossRef] [PubMed]
  14. W. P. Grice, R. Erdmann, I. A. Walmsley, and D. Branning, "Spectral distinguishability in ultrafast parametric down-conversion," Phys. Rev. A 57, R2289-R2292 (1998). [CrossRef]
  15. C. K. Law, I. A. Walmsley, and J. H. Eberly, "Continuous Frequency Entanglement: Effective Finite Hilbert Space and Entropy Control," Phys. Rev. Lett. 84, 5304-5307 (2000). [CrossRef] [PubMed]
  16. W. P. Grice, A. B. U’Ren, and I. A.Walmsley, "Eliminating frequency and space-time correlations in multiphoton states," Phys. Rev. A 64, 063815 (2001). [CrossRef]
  17. A. Valencia, A. Cere, X. Shi, G. Molina-Terriza, and J. P. Torres, "Shaping theWaveform of Entangled Photons," Phys. Rev. Lett. 99, 243601 (2007). [CrossRef]
  18. K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, "Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber," Opt. Express 15, 14,870-14,886 (2007). [CrossRef]
  19. K. Banaszek, A. B. U’Ren and I. A. Walmsley, "Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides," Opt. Lett. 26, 1367-1369 (2001) [CrossRef]
  20. A. B. U’Ren, Ch. Silberhorn, K. Banaszek and I. A. Walmsley, "Conditional preparation of single photons for scalable quantum-optical networking," Phys. Rev. Lett. 93, 093601 (2004). [CrossRef] [PubMed]
  21. S. Tanzilli, H. D. Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, "Highly efficient photon-pair source using periodically poled lithium niobate waveguide," Electron. Lett. 73, 26 (2001). [CrossRef]
  22. J. E. Sharping, M. Fiorentino, and P. Kumar, "Observation of twin-beam-type quantum correlation in optical fiber," Opt. Lett. 26, 367-369 (2001). [CrossRef]
  23. J. Fan, A. Migdall, and L. J. Wang, "Efficient generation of correlated photon pairs in a microstructure fiber," Opt. Lett. 24, 3368-3370 (2005). [CrossRef]
  24. J. Fan and A. Migdall, "Generation of cross-polarized photon pairs in a microstructure fiber with frequencyconjugate laser pump pulses," Opt. Express 13, 5777 (2005). [CrossRef] [PubMed]
  25. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, "Photonic crystal fiber source of correlated photon pairs," Opt. Express 13, 534-544 (2005). [CrossRef] [PubMed]
  26. J. Fulconis, O. Alibart, W. J. Wadsworth, P. S. J. Russell, and J. G. Rarity, "High brightness single mode source of correlated photon pairs using a photonic crystal fiber," Opt. Express 13, 7572-7582 (2005). [CrossRef] [PubMed]
  27. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, "Optical-Fiber Source of Polarization-Entangled Photons in the 1550 nm Telecom Band," Phys. Rev. Lett. 94, 053601 (2005). [CrossRef] [PubMed]
  28. J. Chen, X. Li, and P. Kumar, "Two-photon-state generation via four-wave mixing in optical fibers," Phys. Rev. A 72, 033801 (2005). [CrossRef]
  29. A. T. Nguyen, K. P. Huy, E. Brainis, P. Mergo, J. Wojcik, T. Nasilowski, J. V. Erps, H. Thienpont, and S. Massar, "Enhanced cross phase modulation instability in birefringent photonic crystal fibers in the anomalous dispersion regime," Opt. Express 14, 8290-8297 (2006). [CrossRef] [PubMed]
  30. J. Fan, M. D. Eisaman, and A. Migdall, "Bright phase-stable broadband fiber-based source of polarizationentangled photon pairs," Phys. Rev. A 76, 043836 (2007). [CrossRef]
  31. J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, "Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source," Phys. Rev. Lett. 99, 120501 (2007). [CrossRef] [PubMed]
  32. X. Li, L. Yang, L. Cui, Z. Y. Ou, and D. Yu, "Fiber-based source of photon pairs at telecom band with high temporal coherence and brightness for quantum information processing," Opt. Lett. 33, 593-595 (2008). [CrossRef] [PubMed]
  33. E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, "Spectrally bright and broad fiberbased heralded single-photon source," Phys. Rev. A 78, 013844 (2008). [CrossRef]
  34. O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, "Tailored photon-pair generation in optical fibers," Phys. Rev. Lett. 102, 123603 (2009). [CrossRef] [PubMed]
  35. A. R. McMillan, J. Fulconis, M. Halder, C. Xiong, J. G. Rarity, andW. J.Wadsworth, "Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm," Opt. Express 17, 6156-6165 (2009). [CrossRef] [PubMed]
  36. M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, "Nonclassical 2-photon interference with separate intrinsically narrow band fibre sources," Opt. Express 17, 4670-4676 (2009). [CrossRef] [PubMed]
  37. A. S. Clark, J. Fulconis, J. G. Rarity, W. J. Wadsworth, and J. L. O’Brien, "All-optical-fiber polarization-based quantum logic gate," Phys. Rev. A 79, 030303(R) (2009). [CrossRef]
  38. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, "Silica-on-Silicon Waveguide Quantum Circuits," Science 320, 646-649 (2008). [CrossRef] [PubMed]
  39. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, "Manipulation of multiphoton entanglement in waveguide quantum circuits," Nat. Photonics 3, 346-350 (2009). [CrossRef]
  40. G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, "Laser written waveguide photonic quantum circuits," Opt. Express 17, 12,546-12,554 (2009). [CrossRef]
  41. B. J. Smith, D. M. Kundys, N. Thomas-Peter, P. G. R. Smith, and I. A. Walmsley, "Phase-controlled integrated photonic quantum circuits," Opt. Express 17, 13,639-13,645 (2009). [CrossRef]
  42. A. Politi, J. C. F. Matthews, and J. L. O’Brien, "Shor’s Quantum Factoring Algorithm on a Photonic Chip," Science 325, 1221 (2009). [CrossRef] [PubMed]
  43. L. Zhang, A. B. U’Ren, R. Erdmann, K. A. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, "Generation of highly entangled photon pairs for continuous variable Bell inequality violation," J. Mod. Opt. 54, 707 (2007). [CrossRef]
  44. A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, "Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion," Laser Physics 15, 146-161 (2005).
  45. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A.Walmsley, "Heralded Generation of Ultrafast Single Photons in Pure Quantum States," Phys. Rev. Lett. 100, 133601 (2008). [CrossRef] [PubMed]
  46. J. E. Sharping, J. Chen, X. Li, and P. Kumar, "Quantum-correlated twin photons from microstructure fiber," Opt. Express 12, 3086-3094 (2004). [CrossRef] [PubMed]
  47. J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, "Four-wave mixing in microstructure fiber," Opt. Lett. 26, 1048-1050 (2001). [CrossRef]
  48. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, "All-Fiber Photon-Pair Source for Quantum Communications," IEEE Photon. Tech. Lett. 14, 983-985 (2002). [CrossRef]
  49. H. Takesue and K. Inoue, "1.5-m band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber," Opt. Express 13, 7832-7839 (2005). [CrossRef] [PubMed]
  50. C. Liang, K. F. Lee, T. Levin, J. Chen, and P. Kumar, "Ultra stable all-fiber telecom-band entangled photon-pair source for turnkey quantum communication applications," Opt. Express 14, 6936-6941 (2006). [CrossRef] [PubMed]
  51. S. D. Dyer, M. J. Stevens, B. Baek, and S.W. Nam, "High-efficiency, ultra low-noise all-fiber photon-pair source," Opt. Express 16, 9966-9977 (2008). [CrossRef] [PubMed]
  52. S. D. Dyer, B. Baek, and S. W. Nam, "High-brightness, low-noise, all-fiber photon pair source," Opt. Express 17, 10,290-10,297 (2009). [CrossRef]
  53. J. B. Altepeter, J. Chen, and P. Kumar, "Entangled State Engineering in Single-Mode Fibers," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD), (Optical Society of America, 2008), paper QMA4. [PubMed]
  54. M. A. Hall, J. B. Altepeter, and P. Kumar, "Generation of O-Band Polarization Entanglement in SMF-28," in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper ITuE5.
  55. M. A. Hall, J. B. Altepeter, and P. Kumar, "Drop-in compatible entanglement for optical-fiber networks," Opt. Express 17, 14,558-14,566 (2009). [CrossRef]
  56. R. H. Stolen and J. E. Bjorkholm, "Parametric Amplification and Frequency Conversion in Optical Fibers," IEEE J. Quantum Electron. 18, 1062-1072 (1982). [CrossRef]
  57. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed., (Academic Press, Burlington, MA, 2006).
  58. P. S. Russell, "Photonic-Crystal Fibers," J. Lightwave Technology 24, 4729-4749 (2006). [CrossRef]
  59. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, "Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber," Opt. Lett. 31, 1905-1907 (2006). [CrossRef] [PubMed]
  60. R. H. Stolen, M. A. Bosch, and C. Lin, "Phase matching in birefringent fibers," Opt. Lett. 6, 213-215 (1981). [CrossRef] [PubMed]
  61. S. G. Murdoch, R. Leonhardt, and J. D. Harvey, "Polarization modulation instability in weakly birefringent fibers," Opt. Lett. 20, 866-868 (1995). [CrossRef] [PubMed]
  62. S. Kasap and P. Capper, eds., Springer Handbook of Electronic and Photonic Materials (Springer, New York, 2006).
  63. C. Söller, B. Brecht, P. J. Mosley, L. Zang, A. Podlipensky, N. Y. Joly, P. S. Russell, and C. Silberhorn, "Bridging Visible and Telecom Wavelengths with a Single-Mode Broadband Photon Pair Source," quant-ph:0908.2932v1.
  64. P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, "Conditional preparation of single photons using parametric downconversion: a recipe for purity," New J. Phys. 10, 093011 (2008). [CrossRef]
  65. Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation by four-wave mixing in optical fibers," Opt. Lett. 31, 1286-1288 (2006). [CrossRef] [PubMed]
  66. Q. Lin, F. Yaman, and G. P. Agrawal, "Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization," Phys. Rev. A 75, 023803 (2007). [CrossRef]
  67. J. J. Thorn, M. S. Neel, V. W. Donato, G. S. Bergreen, R. E. Davies, and M. Beck, "Observing the quantum behavior of light in an undergraduate laboratory," Am. J. Phys. 72, 1210-1219 (2004). [CrossRef]
  68. A. B. U’Ren, C. Silberhorn, J. L. Ball, K . Banaszek, and I. A. Walmsley, "Characterization of the nonclassical nature of conditionally prepared single photons," Phys. Rev. A 72, 021802(R) (2005).
  69. P. Grangier, G. Roger, and A. Aspect, "Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences," Europhys. Lett. 1, 173-179 (1986). [CrossRef]
  70. Y.-H. Kim and W. P. Grice, "Measurement of the spectral properties of the two-photon state generated via type II spontaneous parametric downconversion," Opt. Lett. 30, 908-910 (2005). [CrossRef] [PubMed]
  71. M. A. Nielson and I. L. Chuang, Quantum Computation and Quantum Information, (Cambridge University Press, Cambridge, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited