OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 23603–23609

Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides

Jianjun Chen, Zhi Li, Song Yue, and Qihuang Gong  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 23603-23609 (2009)
http://dx.doi.org/10.1364/OE.17.023603


View Full Text Article

Enhanced HTML    Acrobat PDF (527 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A finite width dielectric-metal-dielectric (DMD) waveguide placed on a substrate is numerically investigated near the telecom wavelength λ = 1550 nm by the finite element method. With proper waveguide sizes, the asymmetrical DMD waveguide can support hybrid long-range surface plasmon-polariton modes which have tight field confinement (~700 nm) and long propagation lengths (L> 300 μm) simultaneously. Compact plasmonic waveguide-ring resonators (WRRs) based on such asymmetrical DMD waveguide show high quality factors compared with dielectric-loaded surface plasmon-polariton, channel plasmon polariton, plasmonic whispering-gallery microcavity, and pure dielectric waveguide cases.

© 2009 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.7390) Optical devices : Waveguides, planar
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: September 29, 2009
Revised Manuscript: December 3, 2009
Manuscript Accepted: December 6, 2009
Published: December 9, 2009

Citation
Jianjun Chen, Zhi Li, Song Yue, and Qihuang Gong, "Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides," Opt. Express 17, 23603-23609 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-23603


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, Berlin, 1988).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. D. Pacifici, H. J. Lezec, and H. A. Atwater, “All-optical modulation by plasmonic excitation of CdSe quantum dots,” Nat. Photonics 1(7), 402–406 (2007). [CrossRef]
  4. D. Sarid, “Long-Range Surface-Plasma Waves on Very Thin Metal-Films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981). [CrossRef]
  5. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25(11), 844–846 (2000). [CrossRef] [PubMed]
  6. I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation,” Appl. Phys. Lett. 88(5), 051119 (2006). [CrossRef]
  7. P. Berini, “Long-range surface plasmon-polariton waveguides in silica,” J. Appl. Phys. 102(5), 053105 (2007). [CrossRef]
  8. A. Degiron, S. Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A 77(2), 021804 (2008). [CrossRef]
  9. T. Holmgaard and S. I. Bozhevolnyi, “Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides,” Phys. Rev. B 75(24), 245405 (2007). [CrossRef]
  10. A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78(4), 045425 (2008). [CrossRef]
  11. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Wavelength selection by dielectric-loaded plasmonic components,” Appl. Phys. Lett. 94(5), 051111 (2009). [CrossRef]
  12. Y. Binfeng, H. Guohua, and C. Yiping, “Bound modes analysis of symmetric dielectric loaded surface plasmon-polariton waveguides,” Opt. Express 17(5), 3610–3618 (2009). [CrossRef] [PubMed]
  13. K. Preston and M. Lipson, “Slot waveguides with polycrystalline silicon for electrical injection,” Opt. Express 17(3), 1527–1534 (2009). [CrossRef] [PubMed]
  14. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009). [CrossRef] [PubMed]
  15. R. Adato and J. Guo, “Modification of dispersion, localization, and attenuation of thin metal stripe symmetric surface plasmon-polariton modes by thin dielectric layers,” J. Appl. Phys. 105(3), 034306 (2009). [CrossRef]
  16. E. D. Palik, Handbook of Optical Constants of Solids, 1st ed. (Academic, New York, 1985).
  17. R. Slavík and J. Homola, “Optical multilayers for LED-based surface plasmon resonance sensors,” Appl. Opt. 45(16), 3752–3759 (2006). [CrossRef] [PubMed]
  18. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microw. Theory Tech. 55(6), 1209–1218 (2007). [CrossRef]
  19. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009). [CrossRef] [PubMed]
  20. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  21. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B 63(12), 125417 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited