OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 23617–23628

Many-element coupled-resonator optical waveguides using gapless-coupled microdisk resonators

Xianshu Luo and Andrew W. Poon  »View Author Affiliations

Optics Express, Vol. 17, Issue 26, pp. 23617-23628 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (445 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report silicon photonic many-element coupled-resonator optical waveguides (CROWs) using microspiral and double-notch-shaped microdisk resonators. Such microresonators enable gapless inter-cavity coupling via seamlessly jointed sub-micrometer-sized notches. Our experiments reveal CROW transmission spectra using up to 101 gaplessly coupled microdisk resonators. We estimate from the transmission measurements an insertion loss of ~0.11 - ~0.24 dB/disk within the transmission bands. We show high-order filtering performance with maximum 3-dB linewidth of ~2.5 nm and measurement-limited side-mode suppression ratio of ~30 dB. The demonstrated maximum optical delay from a 101-element 0.4-μm-notch CROW is ~70 ps at the transmission band center and ~110 ps at the sideband.

© 2009 OSA

OCIS Codes
(200.4490) Optics in computing : Optical buffers
(230.3120) Optical devices : Integrated optics devices
(230.4555) Optical devices : Coupled resonators

ToC Category:
Integrated Optics

Original Manuscript: October 8, 2009
Revised Manuscript: November 23, 2009
Manuscript Accepted: November 30, 2009
Published: December 10, 2009

Xianshu Luo and Andrew W. Poon, "Many-element coupled-resonator optical waveguides using gapless-coupled microdisk resonators," Opt. Express 17, 23617-23628 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999). [CrossRef] [PubMed]
  2. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004). [CrossRef]
  3. F. Xia, L. Sekaric, M. O'Boyle, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89(4), 041122 (2006). [CrossRef]
  4. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15(22), 14765–14771 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-22-14765 . [CrossRef] [PubMed]
  5. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-11934 . [CrossRef] [PubMed]
  6. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008). [CrossRef]
  7. Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, “Design and demonstration of compact, wide bandwidth coupled-resonator filters on a siliconon- insulator platform,” Opt. Express 17(4), 2247–2254 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-4-2247 . [CrossRef] [PubMed]
  8. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21(9), 1665–1673 (2004). [CrossRef]
  9. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Transmission and group delay of microring coupled-resonator optical waveguides,” Opt. Lett. 31(4), 456–458 (2006). [CrossRef] [PubMed]
  10. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Polymer microring coupled-resonator optical waveguides,” J. Lightwave Technol. 24(4), 1843–1849 (2006). [CrossRef]
  11. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  12. A. Melloni, F. Morichetti, C. Ferrari, and M. Martinelli, “Continuously tunable 1 byte delay in coupled-resonator optical waveguides,” Opt. Lett. 33(20), 2389–2391 (2008). [CrossRef] [PubMed]
  13. S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2(2), 90–93 (2008). [CrossRef]
  14. X. Luo, and A. W. Poon, “50-element cascaded-resonator devices with gapless non-evanescent coupling using double-notch-shaped microdisks on a silicon chip,” IEEE 5th International Conference on Group IV Photonics, Sorrento, Italy, 2008.
  15. X. Luo and A. W. Poon, “Double-notch-shaped microdisk resonator devices with gapless coupling on a silicon chip,” Chin. Opt. Lett. 7, 296–298 (2009). [CrossRef]
  16. X. Luo, and A. W. Poon, “101-element cascaded-microdisk resonators on a silicon chip,” in Proc. Conference on Lasers and Electro-Optics 2009 (IEEE and Optical Society of America,2009), Paper CMAA3.
  17. G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003). [CrossRef]
  18. J. Y. Lee, X. Luo, and A. W. Poon, “Reciprocal transmissions and asymmetric modal distributions in waveguide-coupled spiral-shaped microdisk resonators,” Opt. Express 15(22), 14650–14666 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-22-14650 . [CrossRef] [PubMed]
  19. X. Luo, J. Y. Lee, and A. W. Poon, “Coupled spiral-shaped microdisk resonators with asymmetric non-evanescent coupling,” IEEE 4th International Conference on Group IV Photonics, Tokyo, Japan, 2007.
  20. X. Luo and A. W. Poon, “Coupled spiral-shaped microdisk resonators with non-evanescent asymmetric inter-cavity coupling,” Opt. Express 15(25), 17313–17322 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-17313 . [CrossRef] [PubMed]
  21. A. W. Poon, X. Luo, H. Chen, G. E. Fernandes, and R. K. Chang, “Microspiral resonators for integrated photonics,” Opt. Photon. News 19(10), 36–53 (2008). [CrossRef]
  22. A. W. Poon, X. Luo, L. Zhou, C. Li, J. Y. Lee, F. Xu, H. Chen, and N. K. Hon, “Microresonator-based devices on a silicon chip: novel shaped cavities and resonance coherent interference,” in Matsko, A. (Ed.) Practical applications of microresonators in optics and photonics (CRC Press, Taylor and Francis Group, Boca Raton, 2009).
  23. X. Luo, C. Li, and A. W. Poon, “Double-notch-shaped microdisk resonator-based devices in silicon-on-insulator,” in Proc. Conference on Lasers and Electro-Optics 2008 (IEEE and Optical Society of America,2008), paper CTuNN7.
  24. G. D. Chern, G. E. Fernandes, R. K. Chang, Q. Song, L. Xu, M. Kneissl, and N. M. Johnson, “High-Q-preserving coupling between a spiral and a semicircle micro-cavity,” Opt. Lett. 32(9), 1093–1095 (2007). [CrossRef] [PubMed]
  25. G. E. Fernandes, L. Guyot, G. D. Chern, M. Kneissl, N. M. Johnson, Q. Song, L. Xu, and R. K. Chang, “Wavelength and intensity switching in directly coupled semiconductor microdisk lasers,” Opt. Lett. 33(6), 605–607 (2008). [CrossRef] [PubMed]
  26. K. Ohtaka, “Theory I: Basic aspects of photonic bands,” In K. Inoue, and K. Ohtaka, (Eds) Photonics crystals: physics, fabrication, and applications (Spinger-Verlag, Berlin; Hong Kong 2004).
  27. J. W. Goodman, Introduction to Fourier Optics, Ch. 10, 3rd edition (ROBERTS & COMPANY, Englewood, Colorado, 2005).
  28. C. Ferrari, F. Morichetti, and A. Melloni, “Disorder in coupling-resonator optical waveguides,” J. Opt. Soc. Am. B 26(4), 858–866 (2009). [CrossRef]
  29. S. Mookherjea and A. Oh, “Effect of disorder on slow light velocity in optical slow-wave structures,” Opt. Lett. 32(3), 289–291 (2007). [CrossRef] [PubMed]
  30. C. K. Madsen, and J. H. Zhao, Optical filter design and analysis: a signal processing approach. 1st edition, John Wiley & Sons, Inc. (1999).
  31. A. Melloni, F. Morichetti, and M. Martinelli, “Polarization conversion in ring resonator phase shifters,” Opt. Lett. 29(23), 2785–2787 (2004). [CrossRef] [PubMed]
  32. F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15(25), 17273–17282 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-17273 . [CrossRef] [PubMed]
  33. F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line,” Opt. Express 16(12), 8395–8405 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-12-8395 . [CrossRef] [PubMed]
  34. L. Zhou and A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express 14(15), 6851–6857 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-15-6851 . [CrossRef] [PubMed]
  35. C. Li, L. Zhou, and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express 15(8), 5069–5076 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-5069 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited