OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 23643–23654

Performance-enhanced superluminescent diode with surface plasmon waveguide

Mehdi Ranjbaran and Xun Li  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 23643-23654 (2009)
http://dx.doi.org/10.1364/OE.17.023643


View Full Text Article

Enhanced HTML    Acrobat PDF (520 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Super luminescent Diode (SLD) with a new structure is proposed in which light is guided by surface plasmon waveguide (SPWG) rather than by the conventional dielectric waveguide. This results in a great increase of the spontaneous emission coupling. Other parameters important to the device operation such as the confinement factor, waveguide loss and waveguide facets reflectivities are also considered. It is shown that the new design outperforms the conventional ones using dielectric waveguides in both the output power and optical spectral width.

© 2009 OSA

OCIS Codes
(230.7020) Optical devices : Traveling-wave devices

ToC Category:
Optical Devices

History
Original Manuscript: October 30, 2009
Revised Manuscript: November 25, 2009
Manuscript Accepted: December 3, 2009
Published: December 10, 2009

Citation
Mehdi Ranjbaran and Xun Li, "Performance-enhanced superluminescent diode with surface plasmon waveguide," Opt. Express 17, 23643-23654 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-23643


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. K. Burns, C.-L. Chen, and R. P. Moeller, “Fiber-optic gyroscopes with broad-band sources,” J. Lightwave Technol. 1(1), 98–105 (1983). [CrossRef]
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  3. M. J. Hamp and D. T. Cassidy, “Critical design parameters for engineering broadly tunable asymmetric multiple-quantum-well lasers,” J. Quantum Electron. 36(8), 978–983 (2000). [CrossRef]
  4. C.-F. Lin and B.-L. Lee, “Extremely broadband AlGaAs/GaAs superluminescent diodes,” Appl. Phys. Lett. 71(12), 1598–1600 (1997). [CrossRef]
  5. J. W. Park and X. Li, “Theoretical and numerical analysis of superluminescent diodes,” J. Lightwave Technol. 24(6), 2473–2480 (2006). [CrossRef]
  6. X. Li and M. Ranjbaran, “Performance enhancement of superluminescent light emitting diode built on surface plasmonic waveguide,” Invited paper, Photonics and Optoelectronics Meetings (POEM2009), Wuhan, P. R. China (Aug. 2009).
  7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  8. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  9. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal film,” Phys. Rev. B 33(8), 5186–5201 (1986). [CrossRef]
  10. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Gain assisted surface plasmon polariton in quantum wells structures,” Opt. Express 15(1), 176–182 (2007). [CrossRef] [PubMed]
  11. J. Chilwell and I. Hodgkinson, “Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides,” J. Opt. Soc. Am. A 1(7), 742–753 (1984). [CrossRef]
  12. C. Chen, P. Berini, D. Feng, S. Tanev, and V. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media,” Opt. Express 7(8), 260–272 (2000). [CrossRef] [PubMed]
  13. E. Anemogiannis and E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” J. Lightwave Technol. 10(10), 1344–1351 (1992). [CrossRef]
  14. R. F. Wallis, A. A. Maradudin, and G. I. Stegeman, “Surface polariton reflection and radiation at end facets,” Appl. Phys. Lett. 42(9), 764–766 (1983). [CrossRef]
  15. R. Gordon, “Vectorial method for calculating the Fresnel reflection of surface plasmon polaritons,” Phys. Rev. B 74, 153417(1)-153417(4) (2006). [CrossRef]
  16. J. L. Pleumeekers, M.-A. Dupertuis, T. Hessler, P. E. Selbmann, S. Haacke, and B. Deveaud, “Longitudinal spatial hole burning and associated nonlinear gain in gain-clamped semiconductor optical amplifiers,” J. Quantum Electron. 34(5), 879–886 (1998). [CrossRef]
  17. J. Dakin, and R. G. W. Brown, Handbook of optoelectronics, (Taylor & Francis, New York, 2006).
  18. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys. 37, 1–65 (1978) (and references therein). [CrossRef]
  19. K. H. Drexhage, “Interaction of light with monomolecular dye layers,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1976).
  20. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984). [CrossRef]
  21. W. L. Barnes, “Electromagnetic crystals for surface plasmon polaritons and the extraction of light from the emissive devices,” J. Lightwave Technol. 17(11), 2170–2182 (1999). [CrossRef]
  22. I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999). [CrossRef]
  23. C. T. Tai, Dyadic Green's Function in Electromagnetic Theory (Oxford University Press, 1996).
  24. D. Ahn and S. L. Chuang, “A field-effect quantum-well laser with lateral current injection,” J. Appl. Phys. 64(1), 440–442 (1988). [CrossRef]
  25. J. W. Park, X. Li, and W.-P. Huang, “Comparative study on mixed frequency–time–domain models of semiconductor laser optical amplifiers,” Optoelectronics 152(3), 151–159 (2005). [CrossRef]
  26. G. P. Agrawal, and N. K. Dutta, Semiconductor Lasers (Springer, 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited