OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 23655–23663

Effect of retardation on localized surface plasmon resonances in a metallic nanorod

Timothy J. Davis, Kristy C. Vernon, and Daniel E. Gómez  »View Author Affiliations

Optics Express, Vol. 17, Issue 26, pp. 23655-23663 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (246 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The localized surface plasmon resonances in a metallic nanorod are determined using the “electrostatic approximation” and by a finite-difference time-domain numerical solution of Maxwell’s equations. The difference between the two methods is related to the effects of re-radiation, or retardation, which is not included in the electrostatic formulation. It is shown that high-order modes in a metallic nanorod can be modeled by both methods, even beyond the point where the electrostatic method is supposed to fail. This suggests that the simple analytical expressions derived from the electrostatic approximation are valid for describing the large range of resonant modes associated with metallic nanoparticles, including dark modes.

© 2009 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: October 23, 2009
Revised Manuscript: November 30, 2009
Manuscript Accepted: December 1, 2009
Published: December 10, 2009

Timothy J. Davis, Kristy C. Vernon, and Daniel E. Gómez, "Effect of retardation on localized surface plasmon resonances in a metallic nanorod," Opt. Express 17, 23655-23663 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966). [CrossRef]
  2. A. Taflove, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, London, 1995).
  3. E. Noponen and J. Turunen, “Eigenmode method for electromagnetic synthesis of diffractive elements with three-dimensional profiles,” J. Opt. Soc. Am. A 11(9), 2494–2502 (1994). [CrossRef]
  4. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995). [CrossRef]
  5. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface relief gratings: enhanced transmission matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995). [CrossRef]
  6. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994). [CrossRef]
  7. F. J. García de Abajo and A. Howie, “Relativistic Electron Energy Loss and Electron-Induced Photon Emission in Inhomogeneous Dielectrics,” Phys. Rev. Lett. 80(23), 5180–5183 (1998). [CrossRef]
  8. F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” A., Phys. Rev. B 65(11), 115418 (2002). [CrossRef]
  9. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005). [CrossRef]
  10. T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009). [CrossRef]
  11. T. J. Davis, K. C. Vernon, and D. E. Gómez, “A plasmonic “ac Wheatstone bridge” circuit for high-sensitivity phase measurement and single-molecule detection,” J. Appl. Phys. 106(4), 043502 (2009). [CrossRef]
  12. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008). [CrossRef] [PubMed]
  13. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009). [CrossRef] [PubMed]
  14. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009). [CrossRef] [PubMed]
  15. T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems: applications to dark modes in nanoparticle pairs and triplets,” Proc. SPIE 7394, 739423 (2009). [CrossRef]
  16. P. W. Barber, R. K. Chang, and H. Massoudi, “Electrodynamic calculations of the surface-enhanced electric intensities on large Ag spheroids,” Phys. Rev. B 27(12), 7251–7261 (1983). [CrossRef]
  17. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008). [CrossRef] [PubMed]
  18. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004). [CrossRef]
  19. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006). [CrossRef]
  20. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 5.
  21. I. D. Mayergoyz, Z. Zhang, and G. Miano, “Analysis of dynamics of excitation and dephasing of plasmon resonance modes in nanoparticles,” Phys. Rev. Lett. 98(14), 147401 (2007). [CrossRef] [PubMed]
  22. T. J. Davis, “Modelling and fabrication of tuned circuits for optical meta-materials,” Proc. SPIE 6038, Y380 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited