OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 23765–23771

Symmetry breaking induced optical properties of gold open shell nanostructures

Jian Ye, Liesbet Lagae, Guido Maes, Gustaaf Borghs, and Pol Van Dorpe  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 23765-23771 (2009)
http://dx.doi.org/10.1364/OE.17.023765


View Full Text Article

Enhanced HTML    Acrobat PDF (271 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We use the finite difference time domain method to predict how optical plasmon properties are modified if the symmetrical geometry of gold shell nanostructures is broken. The simulations include three kinds of gold open shell nanostructures of nanobowls, open nanocages, and open eggshells. For all structures, the optical extinction spectra commonly display a distinct red shift when the full shell geometry is broken and a hyperbola-like dipolar plasmonic shift when the fractional height continuously decreases. The optical transitions of gold open shell nanostructures are explained by the plasmon hybridization theory combined with numerical calculations. Furthermore, the calculations exhibit that the local electric fields are strongly enhanced at the edges of the open nanoapertures on those symmetry-broken structures, which suggests a potential application in surface-enhanced Raman spectroscopy.

© 2009 OSA

OCIS Codes
(000.2700) General : General science
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: October 16, 2009
Revised Manuscript: November 17, 2009
Manuscript Accepted: December 1, 2009
Published: December 11, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Jian Ye, Liesbet Lagae, Guido Maes, Gustaaf Borghs, and Pol Van Dorpe, "Symmetry breaking induced optical properties of gold open shell nanostructures," Opt. Express 17, 23765-23771 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-23765


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Halas, “Playing with plasmons: tuning the optical resonant properties of metallic nanoshells,” MRS Bull. 30, 362–367 (2005). [CrossRef]
  2. L. Au, D. Zheng, F. Zhou, Z. Y. Li, X. Li, and Y. Xia, “A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells,” ACS Nano 2(8), 1645–1652 (2008). [CrossRef] [PubMed]
  3. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006). [CrossRef] [PubMed]
  4. H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006). [CrossRef] [PubMed]
  5. C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. B 107(30), 7327–7333 (2003). [CrossRef]
  6. J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal nanocaps and their red-shifted optical absorption spectra,” Adv. Mater. 17(10), 1276–1281 (2005). [CrossRef]
  7. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997). [CrossRef]
  8. G. A. Baker and D. S. Moore, “Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis,” Anal. Bioanal. Chem. 382(8), 1751–1770 (2005). [CrossRef] [PubMed]
  9. Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005). [CrossRef] [PubMed]
  10. J.-H. Cho and D. H. Gracias, “Self-assembly of lithographically patterned nanoparticles,” Nano Lett. ASAP, DOI: 10.1021/nl9022176. [CrossRef]
  11. J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009). [CrossRef] [PubMed]
  12. J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009). [CrossRef]
  13. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003). [CrossRef] [PubMed]
  14. H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007). [CrossRef] [PubMed]
  15. J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 1–6 (2009). [CrossRef]
  16. J. P. Marton and B. D. Jordan, “Optical properties of aggregated metal system: interband transitions,” Phys. Rev. B 15(4), 1719–1727 (1977). [CrossRef]
  17. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(1–4), (2006). [CrossRef] [PubMed]
  18. T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 1–12 (2006). [CrossRef]
  19. J. Britt Lassiter, M. W. Knight, N. A. Mirin, and N. J. Halas, “Reshaping the plasmonic properties of an individual nanoparticle,” Nano Lett. Articles ASAP (DOI: 10.1021/nl9025665). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited