OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 23817–23822

Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators

Daoxin Dai  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 23817-23822 (2009)
http://dx.doi.org/10.1364/OE.17.023817


View Full Text Article

Enhanced HTML    Acrobat PDF (166 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A digital optical sensor based on two cascaded rings with different free spectral ranges (FSRs) is proposed. Because of their different FSRs, the major peak of the spectral response from the output port shifts digitally when the effective refractive index of ring #1 changes. And the shift of the major peak is equal to multiple FSRs of ring #2. Since it is easy to design a ring with a FSR of nanometers, the present digital optical sensor shows an ultra-high sensitivity (at the order of 105 nm/RIU) which is over two orders higher than that of a regular single-ring sensor. By using the present digital optical sensor, it becomes convenient to use an integrated optical micro-spectrometer (even with a low resolution) to monitor the peak shift of the spectral response. Therefore, it is promising to realize a low-cost and portable highly-sensitive optical sensor system on a single chip.

© 2009 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.6010) Integrated optics : Sensors

ToC Category:
Integrated Optics

History
Original Manuscript: November 18, 2009
Revised Manuscript: November 29, 2009
Manuscript Accepted: December 8, 2009
Published: December 11, 2009

Citation
Daoxin Dai, "Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators," Opt. Express 17, 23817-23822 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-23817


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006). [CrossRef]
  2. G. Nemova and R. Kashyap, “Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation with a long period grating,” J. Opt. Soc. Am. B 24(10), 2696 (2007). [CrossRef]
  3. S.-Y. Cho and N. M. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18(20), 2096–2098 (2006). [CrossRef]
  4. C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527 (2003). [CrossRef]
  5. Q. F. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29(14), 1626–1628 (2004). [CrossRef] [PubMed]
  6. D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16(19), 15137–15148 (2008). [CrossRef] [PubMed]
  7. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007). [CrossRef] [PubMed]
  8. P. Rabiei and W. H. Steier, “Tunable polymer double micro-ring filters,” IEEE Photon. Technol. Lett. 15(9), 1255–1257 (2003). [CrossRef]
  9. B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupled lasers,” IEEE Photon. Technol. Lett. 14(5), 600–602 (2002). [CrossRef]
  10. P. Cheben, J. H. Schmid, A. Delâge, A. Densmore, S. Janz, B. Lamontagne, J. Lapointe, E. Post, P. Waldron, and D.-X. Xu, “A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides,” Opt. Express 15(5), 2299–2306 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited