OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 23843–23850

Spectrum control by anisotropy in a cylindrical microcavity

Xue-Liang Kang, Yong-Ping Li, Shan-Liang Qiu, and Jia-Xing Cai  »View Author Affiliations

Optics Express, Vol. 17, Issue 26, pp. 23843-23850 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (190 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spectrum control by anisotropy in a cylindrical microcavity made of electric anisotropic medium was studied. A finite-difference time domain method for electric anisotropic medium and Volume-average Effective Permittivity approximation are applied to calculate the resonant frequencies and quality factors of Whispering-gallery modes. The resonant frequency for different whispering-gallery modes has a similar shift in direct proportion to the relative difference of two principal refractive indices. The quality factors decay exponentially due to directional emission when the difference of two principal refractive indices increases. This novel tuning characteristic of anisotropic cylindrical microcavity will play an important role in many areas, such as light source with tunable wavelength, tunable filter and sensor.

© 2009 OSA

OCIS Codes
(230.2090) Optical devices : Electro-optical devices
(230.3990) Optical devices : Micro-optical devices
(140.3945) Lasers and laser optics : Microcavities
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Optical Devices

Original Manuscript: September 23, 2009
Revised Manuscript: October 28, 2009
Manuscript Accepted: December 10, 2009
Published: December 14, 2009

Xue-Liang Kang, Yong-Ping Li, Shan-Liang Qiu, and Jia-Xing Cai, "Spectrum control by anisotropy in a cylindrical microcavity," Opt. Express 17, 23843-23850 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. M. Whittaker, P. S. S. Guimaraes, D. Sanvitto, H. Vinck, S. Lam, A. Daraei, J. A. Timpson, A. M. Fox, M. S. Skolnick, Y.-L. D. Ho, J. G. Rarity, M. Hopkinson, and A. Tahraoui, “High Q modes in elliptical microcavity pillars,” Appl. Phys. Lett. 90(16), 161105 (2007). [CrossRef]
  2. M. L. M. Balistreri, D. J. W. Klunder, F. C. Blom*, A. Driessen, H. W. J. M. Hoekstra, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Visualizing the whispering gallery modes in a cylindrical optical microcavity,” Opt. Lett. 24(24), 1829 (1999). [CrossRef] [PubMed]
  3. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992). [CrossRef]
  4. R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, “Threshold characteristics of semiconductor microdisk lasers,” Appl. Phys. Lett. 63(10), 1310–1312 (1993). [CrossRef]
  5. M. K. Chin, D. Y. Chu, and S. T. Ho, “Estimation of the spontaneous emission factor for microdisk lasers via the approximation of whispering gallery modes,” J. Appl. Phys. 75(7), 3302–3307 (1994). [CrossRef]
  6. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett. 85(17), 3693–3695 (2004). [CrossRef]
  7. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]
  8. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996). [CrossRef] [PubMed]
  9. M. Cai, O. Painter, K. J. Vahala, and P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25(19), 1430–1432 (2000). [CrossRef] [PubMed]
  10. M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett. 80(12), 2051–2053 (2002). [CrossRef]
  11. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003). [CrossRef] [PubMed]
  12. J. Yang and L. J. Guo, “Optical Sensors Based on Active Microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006). [CrossRef]
  13. R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt. 40(31), 5742–5747 (2001). [CrossRef] [PubMed]
  14. S. Ricciardi, S. Popov, A. T. Friberg, and S. Sergeyev, “Thermally induced wavelength tunability of microcavity solid-state dye lasers,” Opt. Express 15(20), 12971–12978 (2007). [CrossRef] [PubMed]
  15. S.-S. Yang, J.-K. Son, Y.-K. Hong, Y.-H. Song, H.-J. Jang, S.- Bae, Y.-H. Lee, G.-M. Yang, H.-S. Ko, and G.-Y. Sung, “Wavelength Tuning of Vertical-Cavity Surface-Emitting Lasers by an Internal Device Heater,” IEEE Photon. Technol. Lett. 20(20), 1679–1681 (2008). [CrossRef]
  16. F. Dybała, A. Bercha, B. Piechal, W. Trzeciakowski, R. Bohdan, M. Mrozowicz, A. Klehr, P. Ressel, H. Wenzel, B. Sumpf, and G. Erbert, “Pressure and temperature tuning of an external cavity InGaAsP laser diode,” Semicond. Sci. Technol. 23(12), 125012 (2008). [CrossRef]
  17. H. Cai, B. Liu, X. M. Zhang, A. Q. Liu, J. Tamil, T. Bourouina, and Q. X. Zhang, “A micromachined tunable coupled-cavity laser for wide tuning range and high spectral purity,” Opt. Express 16(21), 16670–16679 (2008). [CrossRef] [PubMed]
  18. M. C. Larson and J. S. Harris, “Broadly-Tunable Resonant-Cavity Light-Emitting Diode,” IEEE Photon. Technol. Lett. 7(11), 1267–1269 (1995). [CrossRef]
  19. F. Sugihwo, M. C. Larson, and J. S. Harris, “Micromachined widely tunable vertical cavity laser diodes,” J. Microelectromech. Syst. 7(1), 48–55 (1998). [CrossRef]
  20. M. C. Larson and J. S. Harris, “Wide and continuous wavelength tuning in a vertical-cavity surface-emitting laser using a micromachined deformable-membrane mirror,” Appl. Phys. Lett. 68(7), 891–893 (1996). [CrossRef]
  21. J. Schneider and S. Hudson, “The finite-difference time-domain method applied to anisotropic material,” IEEE Trans. Antenn. Propag. 41(7), 994–999 (1993). [CrossRef]
  22. A. Taflove, “Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures,” Wave Motion 10(6), 547–582 (1988). [CrossRef]
  23. A. Mohammadi, H. Nadgaran, and M. Agio, “Contour-path effective permittivities for the two-dimensional finite-difference time-domain method,” Opt. Express 13(25), 10367–10381 (2005). [CrossRef] [PubMed]
  24. S. Dey and R. Mittra, “A Conformal Finite-Difference Time-Domain Technique for Modeling Cylindrical Dielectric Resonators,” IEEE Trans. Microw. Theory Tech. 47(9), 1737–1739 (1999). [CrossRef]
  25. J. Fang and Z. Wu, “Generalized Perfectly Matched Layer for the Absorption of Propagating and Evanescent Waves in Lossless and Lossy Media,” IEEE Trans. Microw. Theory Tech. 44(12), 2216–2222 (1996). [CrossRef]
  26. M. Hentschel and K. Richter, “Quantum chaos in optical systems: the annular billiard,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(5 Pt 2), 056207 (2002). [CrossRef] [PubMed]
  27. S. Dey and R. Mittra, “Efficient computation of resonant frequencies and quality factors of cavities via a combination of the finite-difference time-domain technique and the Pade approximation,” IEEE Microw. Guid. Wave Lett. 8(12), 415–417 (1998). [CrossRef]
  28. S. V. Boriskina, T. M. Benson, P. Sewell, and A. I. Nosich, “Tuning of Elliptic Whispering-Gallery-Mode Microdisk Waveguide Filters,” J. Lightwave Technol. 21(9), 1987–1995 (2003). [CrossRef]
  29. J. U. Nöckel and A. D. Stone, “Ray and wave chaos in asymmetric resonant optical cavities,” Nature 385(6611), 45–47 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited