OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 23861–23866

Effects of the surrounding medium on the optical properties of a subwavelength aperture

Olena Lopatiuk-Tirpak and Sasan Fathpour  »View Author Affiliations

Optics Express, Vol. 17, Issue 26, pp. 23861-23866 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (319 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Influence of the refractive index of the surrounding material on the performance of a C-shaped subwavelength aperture is investigated. The changes in the spectral response (0.6 μm to 6 μm wavelength range) and power throughput of the aperture in an optically opaque silver (Ag) film are described for two configurations: one where the film with the aperture is immersed in an infinite dielectric slab and the other where the metallic layer is immediately adjacent to a semi-infinite dielectric substrate. It is shown that, while the resonant wavelengths increase monotonically with refractive index for both cases, the rates of these increases, as well as the behavior of the power throughput, depend not only on the configuration, but also strongly on the transmission mode. These findings have important implications for the design of subwavelength aperture-enhanced devices.

© 2009 OSA

OCIS Codes
(160.4760) Materials : Optical properties
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(250.5403) Optoelectronics : Plasmonics
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Diffraction and Gratings

Original Manuscript: November 17, 2009
Revised Manuscript: December 8, 2009
Manuscript Accepted: December 10, 2009
Published: December 14, 2009

Olena Lopatiuk-Tirpak and Sasan Fathpour, "Effects of the surrounding medium on the optical properties of a subwavelength aperture," Opt. Express 17, 23861-23866 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  2. L. Tang, D. A. B. Miller, A. K. Okyay, J. A. Matteo, Y. Yuen, K. C. Saraswat, and L. Hesselink, “C-shaped nanoaperture-enhanced germanium photodetector,” Opt. Lett. 31(10), 1519–1521 (2006). [CrossRef] [PubMed]
  3. L. Tang, S. Latif, and D. A. B. Miller, “Plasmonic device in silicon CMOS,” Electron. Lett. 45(13), 706 (2009). [CrossRef]
  4. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005). [CrossRef] [PubMed]
  5. E. C. Kinzel and X. F. Xu, “High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures,” Opt. Express 17(10), 8036–8045 (2009). [CrossRef] [PubMed]
  6. R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008). [CrossRef] [PubMed]
  7. A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001). [CrossRef]
  8. J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003). [CrossRef]
  9. M. H. Lee, H. W. Gao, and T. W. Odom, “Refractive index sensing using quasi one-dimensional nanoslit arrays,” Nano Lett. 9(7), 2584–2588 (2009). [CrossRef] [PubMed]
  10. H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16(11), 7756–7766 (2008). [CrossRef] [PubMed]
  11. X. L. Shi and L. Hesselink, “Design of a C aperture to achieve λ/10 resolution and resonant transmission,” J. Opt. Soc. Am. B 21(7), 1305–1317 (2004). [CrossRef]
  12. X. L. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002). [CrossRef]
  13. Z. F. Yu, G. Veronis, S. H. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006). [CrossRef]
  14. P. Hansen, L. Hesselink, and B. Leen, “Design of a subwavelength bent C-aperture waveguide,” Opt. Lett. 32(12), 1737–1739 (2007). [CrossRef] [PubMed]
  15. L. Y. Sun and L. Hesselink, “Low-loss subwavelength metal C-aperture waveguide,” Opt. Lett. 31(24), 3606–3608 (2006). [CrossRef] [PubMed]
  16. Z. L. Rao, J. A. Matteo, L. Hesselink, and J. S. Harris, “High-intensity C-shaped nanoaperture vertical-cavity surface-emitting laser with controlled polarization,” Appl. Phys. Lett. 90(19), 191110 (2007). [CrossRef]
  17. J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q. H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett. 94(8), 081102–081103 (2009). [CrossRef]
  18. B. A. Munk, Frequency selective surfaces: theory and design (John Wiley & Sons, New York, 2000).
  19. H. Shin, P. B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72(8), 085436 (2005). [CrossRef]
  20. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1119 (1983). [CrossRef] [PubMed]
  21. J. Matteo and L. Hesselink, “Fractal extensions of near-field aperture shapes for enhanced transmission and resolution,” Opt. Express 13(2), 636–647 (2005). [CrossRef] [PubMed]
  22. Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 4
Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited