OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 23903–23913

Characterization of acceptance angles of small circular apertures

Ying Min Wang, Guoan Zheng, and Changhuei Yang  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 23903-23913 (2009)
http://dx.doi.org/10.1364/OE.17.023903


View Full Text Article

Enhanced HTML    Acrobat PDF (1454 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We characterize the acceptance angles of small circular apertures for light collection by simulations and experimental measurements. By examining the full width half maximum acceptance angle as a function of the aperture size, we show that the acceptance angle of a circular aperture reaches a minimum of 67 deg before rebounding around the transition between single mode and multimode transmission (approximately 400 nm). This behavior can be explained by the change of mode-coupling efficiency during the transition from single mode to multimode propagation regime. This work in understanding of the behavior of light transmission through subwavelength apertures will guide the design of better aperture based imaging devices where apertures are used as light collection units.

© 2009 OSA

OCIS Codes
(110.1220) Imaging systems : Apertures
(130.0130) Integrated optics : Integrated optics

ToC Category:
Materials

History
Original Manuscript: October 26, 2009
Revised Manuscript: December 9, 2009
Manuscript Accepted: December 10, 2009
Published: December 15, 2009

Citation
Ying Min Wang, Guoan Zheng, and Changhuei Yang, "Characterization of acceptance angles of 
small circular apertures," Opt. Express 17, 23903-23913 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-23903


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Popov, M. Neviere, P. Boyer, and N. Bonod, “Light transmission through a subwavelength hole,” Opt. Commun. 255(4-6), 338–348 (2005). [CrossRef]
  2. F. Garcia de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express 10(25), 1475–1484 (2002). [PubMed]
  3. E. X. Jin and X. F. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005). [CrossRef]
  4. X. L. Shi, L. Hesselink, and R. L. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett. 28(15), 1320–1322 (2003). [CrossRef] [PubMed]
  5. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006). [CrossRef] [PubMed]
  6. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001). [CrossRef] [PubMed]
  7. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004). [CrossRef] [PubMed]
  8. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  9. T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24(4), 256–258 (1999). [CrossRef] [PubMed]
  10. F. Gao, D. Li, R. W. Peng, Q. Hu, K. Wei, Q. J. Wang, Y. Y. Zhu, and M. Wang, “Tunable interference of light behind subwavelength apertures,” Appl. Phys. Lett. 95(1), 011104 (2009). [CrossRef]
  11. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002). [CrossRef] [PubMed]
  12. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003). [CrossRef] [PubMed]
  13. X. Heng, D. Erickson, L. R. Baugh, Z. Yaqoob, P. W. Sternberg, D. Psaltis, and C. H. Yang, “Optofluidic microscopy--a method for implementing a high resolution optical microscope on a chip,” Lab Chip 6(10), 1274–1276 (2006). [CrossRef] [PubMed]
  14. X. Q. Cui, L. M. Lee, X. Heng, W. W. Zhong, P. W. Sternberg, D. Psaltis, and C. H. Yang, “Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging,” Proc. Natl. Acad. Sci. U.S.A. 105(31), 10670–10675 (2008). [CrossRef] [PubMed]
  15. X. Heng, X. Q. Cui, D. W. Knapp, J. G. Wu, Z. Yaqoob, E. J. McDowell, D. Psaltis, and C. H. Yang, “Characterization of light collection through a subwavelength aperture from a point source,” Opt. Express 14(22), 10410–10425 (2006). [CrossRef] [PubMed]
  16. J. A. Kong, Electromagnetic wave theory (EMW Pub., Cambridge, MA, 2000), Chap. 4.
  17. H. A. Bethe, “Theory of Diffraction by Small Holes,” Phys. Rev. 66(7-8), 163–182 (1944). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited