OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 23986–23991

Efficient generation of near infra-red single photons from the zero-phonon line of a single molecule

J.-B. Trebbia, H. Ruf, Ph. Tamarat, and B. Lounis  »View Author Affiliations

Optics Express, Vol. 17, Issue 26, pp. 23986-23991 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (170 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using the zero-phonon line (ZPL) emission of a single molecule, we realized a triggered source of near-infra-red (λ=785 nm) single photons at a high repetition rate. A Weierstrass solid immersion lens is used to image single molecules with an optical resolution of 300 nm (~0.4λ) and a high collection efficiency. Because dephasing of the transition dipole due to phonons vanishes at liquid helium temperatures, our source is attractive for the efficient generation of single indistinguishable photons.

© 2009 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(270.5290) Quantum optics : Photon statistics

ToC Category:
Quantum Optics

Original Manuscript: September 30, 2009
Revised Manuscript: November 22, 2009
Manuscript Accepted: December 4, 2009
Published: December 16, 2009

J.-B. Trebbia, H. Ruf, Ph. Tamarat, and B. Lounis, "Efficient generation of near infra-red single photons from the zero-phonon line of a single molecule," Opt. Express 17, 23986-23991 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68(5), 1129–1179 (2005). [CrossRef]
  2. Ph. Grangier, B. Sanders, and J. Vuckovic, eds., “Focus on Single Photons on Demand”, New. J. Phys. 6 (2004).
  3. C. Brunel, Ph. Tamarat, B. Lounis, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83(14), 2722–2725 (1999). [CrossRef]
  4. B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407(6803), 491–493 (2000). [CrossRef] [PubMed]
  5. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000). [CrossRef] [PubMed]
  6. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000). [CrossRef] [PubMed]
  7. A. Beveratos, S. Kuhn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002). [CrossRef]
  8. A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89(6), 067901 (2002). [CrossRef] [PubMed]
  9. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431(7012), 1075–1078 (2004). [CrossRef] [PubMed]
  10. C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002). [CrossRef] [PubMed]
  11. J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440(7085), 779–782 (2006). [CrossRef] [PubMed]
  12. M. Orrit, J. Bernard, R. Brown, and B. Lounis, “Optical spectroscopy of single molecules in solids,” Prog. Opt. 35, 61–144 (1996). [CrossRef]
  13. T. Basché, W. E. Moerner, M. Orrit, and U. P. Wild, eds., “Single-Molecule Optical Detection, Imaging and Spectroscopy”, VCH, Weinheim, Germany, (1997).
  14. Ph. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Ten years of single-molecule spectroscopy,” J. Phys. Chem. A 104(1), 1–16 (2000). [CrossRef]
  15. F. Kulzer, S. Kummer, R. Matzke, C. Bräuchle, and Th. Basché, “Single-molecule optical switching of terrylene in p-terphenyl,” Nature 387(6634), 688–691 (1997). [CrossRef]
  16. A. Kiraz, M. Ehrl, T. Hellerer, O. E. Müstecaplioğlu, C. Bräuchle, and A. Zumbusch, “Indistinguishable photons from a single molecule,” Phys. Rev. Lett. 94(22), 223602 (2005). [CrossRef] [PubMed]
  17. V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M. E. Pistol, L. Samuelson, and G. Bjork, “Single quantum dots emit single photons at a time: Antibunching experiments,” Appl. Phys. Lett. 78(17), 2476–2478 (2001). [CrossRef]
  18. R. Lettow, V. Ahtee, R. Pfab, A. Renn, E. Ikonen, S. Götzinger, and V. Sandoghdar, “Realization of two Fourier-limited solid-state single-photon sources,” Opt. Express 15(24), 15842–15847 (2007). [CrossRef] [PubMed]
  19. Q. Wu, R. D. Grober, D. Gammon, and D. S. Katzer, “Imaging spectroscopy of two-dimensional excitons in a narrow GaAs/AlGaAs quantum well,” Phys. Rev. Lett. 83(13), 2652–2655 (1999). [CrossRef]
  20. V. Zwiller and G. Bjork, “Improved light extraction from emitters in high refractive index materials using solid immersion lenses,” J. Appl. Phys. 92(2), 660–665 (2002). [CrossRef]
  21. K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. D. Gerardot, J. A. O'Connor, R. H. Hadfield, R. J. Warburton, and D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2(1), 021854 (2008). [CrossRef]
  22. C. Hofmann, A. Nicolet, M. A. Kol’chenko, and M. Orrit, “Towards nanoprobes for conduction in molecular crystals: Dibenzoterrylene in anthracene crystals,” Chem. Phys. 318(1-2), 1–6 (2005). [CrossRef]
  23. A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, R. Brown, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: main insertion sites,” ChemPhysChem 8(13), 1929–1936 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited