OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 23992–24001

Light trapping cavity enhanced light transmission through a single sub-wavelength aperture in a metal film

Juuso Olkkonen  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 23992-24001 (2009)
http://dx.doi.org/10.1364/OE.17.023992


View Full Text Article

Enhanced HTML    Acrobat PDF (383 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that optical transmission of a normally incident, monochromatic plane wave through a single sub-wavelength aperture in an opaque metal film can be substantially enhanced by a thin, semitransparent metal film placed parallel to the opaque metal film in front of the aperture. When the semi-transparent and the opaque metal film are separated by a proper distance, a light trapping cavity is formed and the sub-wavelength aperture exhibits a transmission maximum. An enhancement factor of ~40 is demonstrated for a cylindrical 100 nm diameter hole in a silver film.

© 2009 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(240.0240) Optics at surfaces : Optics at surfaces

ToC Category:
Diffraction and Gratings

History
Original Manuscript: October 9, 2009
Revised Manuscript: November 25, 2009
Manuscript Accepted: December 2, 2009
Published: December 16, 2009

Citation
Juuso Olkkonen, "Light trapping cavity enhanced light transmission through a single sub-wavelength aperture in a metal film," Opt. Express 17, 23992-24001 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-23992


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  2. D. E. Grupp, H. J. Lezec, T. Thio, and T. W. Ebbesen, “Beyond the Bethe Limit: Tunable Enhanced Light Transmission Through a Single Sub-Wavelength Aperture,” Adv. Mater. 11(10), 860–862 (1999). [CrossRef]
  3. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001). [CrossRef] [PubMed]
  4. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: Physics and applications,” Nanotechnology 13(3), 429–432 (2002). [CrossRef]
  5. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90(21), 213901–1 (2003). [CrossRef] [PubMed]
  6. D. A. Thomas and H. P. Hughes, “Enhanced optical transmission through a subwavelength 1D aperture,” Solid State Commun. 129(8), 519–524 (2004). [CrossRef]
  7. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B Condens. Matter 58(11), 6779–6782 (1998). [CrossRef]
  8. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-16-3629 . [CrossRef] [PubMed]
  9. F. Wu, D. Han, X. Li, X. Liu, and J. Zi, “Enhanced transmission mediated by guided resonances in metallic gratings coated with dielectric layers,” Opt. Express 16(9), 6619–6624 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-9-6619 . [CrossRef] [PubMed]
  10. J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, 2000).
  11. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966). [CrossRef]
  12. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Second Edition, Artech House, INC., 2000).
  13. S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antenn. Propag. 44(12), 1630–1639 (1996). [CrossRef]
  14. M. Okoniewski, M. Mrozowski, and M. A. Stuchly, “Simple treatment of multi-term dispersion in FDTD,” IEEE Microw. Guid. Wave Lett. 7(5), 121–123 (1997). [CrossRef]
  15. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev., B, Solid State 6(12), 4370–4379 (1972). [CrossRef]
  16. J. Olkkonen, K. Kataja, and D. Howe, “Light transmission through a high index dielectric-filled sub-wavelength hole in a metal film,” Opt. Express 13(18), 6980–6989 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-6980 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited