OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 24013–24019

A theoretical description of Fourier domain mode locked lasers

Christian Jirauschek, Benjamin Biedermann, and Robert Huber  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 24013-24019 (2009)
http://dx.doi.org/10.1364/OE.17.024013


View Full Text Article

Enhanced HTML    Acrobat PDF (255 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The first theoretical model of Fourier domain mode locking operation is presented. A specially tailored dynamic equation in a moving spectral reference frame is derived, enabling efficient numerical treatment, despite the broad laser spectrum and the extremely long cavity. The excellent agreement of the presented theory with experiment over a wide range of operation parameters enables a quantitative assessment of the relevant physical effects, such as the spectral loss modulation and gain saturation dynamics, amplified spontaneous emission, linewidth enhancement, and self-phase modulation.

© 2009 OSA

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.3600) Lasers and laser optics : Lasers, tunable
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 6, 2009
Revised Manuscript: December 11, 2009
Manuscript Accepted: December 11, 2009
Published: December 16, 2009

Citation
Christian Jirauschek, Benjamin Biedermann, and Robert Huber, "A theoretical description of Fourier domain mode locked lasers," Opt. Express 17, 24013-24019 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-24013


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006). [CrossRef] [PubMed]
  2. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007). [CrossRef]
  3. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006). [CrossRef] [PubMed]
  4. L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 (2007). [CrossRef] [PubMed]
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  6. V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci. 49(11), 5103–5110 (2008). [CrossRef] [PubMed]
  7. J. M. Schmitt, R. Huber, and J. G. Fujimoto, “Limiting ischemia by fast Fourier-domain imaging,” in Optical Coherence Tomography in Cardiovascular Research, E. Regar, P. W. Serruys, and T. G. van Leeuwen, eds. (Informa HealthCare, London, 2007), p. 257.
  8. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001).
  9. A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive-index nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications,” Opt. Lett. 31(6), 760–762 (2006). [CrossRef] [PubMed]
  10. D. Cassioli, S. Scotti, and A. Mecozzi, “A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers,” IEEE J. Quantum Electron. 36(9), 1072–1080 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited