OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 24060–24074

Frequency-domain simulations of a negative-index material with embedded gain

Yonatan Sivan, Shumin Xiao, Uday K. Chettiar, Alexander V. Kildishev, and Vladimir M. Shalaev  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 24060-24074 (2009)
http://dx.doi.org/10.1364/OE.17.024060


View Full Text Article

Acrobat PDF (463 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We solve the equations governing light propagation in a negative-index material with embedded nonlinearly saturable gain material using a frequency-domain model. We show that available gain materials can lead to complete loss compensation only if they are located in the regions where the field enhancement is maximal. We study the increased enhancement of the fields in the gain composite as well as in the metal inclusions and show analytically that the effective gain is determined by the average near-field enhancement.

© 2009 OSA

OCIS Codes
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: August 25, 2009
Revised Manuscript: October 15, 2009
Manuscript Accepted: October 26, 2009
Published: December 17, 2009

Citation
Yonatan Sivan, Shumin Xiao, Uday K. Chettiar, Alexander V. Kildishev, and Vladimir M. Shalaev, "Frequency-domain simulations of a negative-index material with embedded gain," Opt. Express 17, 24060-24074 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-24060


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41 (2007). [CrossRef]
  2. C. M. Soukoulis, S. Linden, and M. Wegener, “Physics. Negative refractive index at optical wavelengths,” Science 315(5808), 47–49 (2007). [CrossRef]
  3. N. M. Litchinitser, I. R. Gabitov, A. I. Maimistov, and V. M. Shalaev, “Negative refractive index metamaterials in optics,” Progress in Optics 51, 1–67 (2008). [CrossRef]
  4. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magentism from conductors and enhanced nonlinear phenomena,” IEEE Microw. Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]
  5. W. Cai, U. K. Chettiar, H.-K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15(6), 3333 (2007). [CrossRef]
  6. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000). [CrossRef]
  7. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef]
  8. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30(24), 3356–3358 (2005). [CrossRef]
  9. U. K. Chettiar, S. Xiao, A. V. Kildishev, W. Cai, H.-K. Yuan, V. P. Drachev, and V. M. Shalaev, “Optical Metamagnetism and Negative-Index Metamaterials,” MRS Bull. 33, 921 (2008).
  10. S. Xiao, U. K. Chettiar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Yellow-light negative-index metamaterials,” Opt. Lett. (accepted).
  11. A. J. Hoffman, L. V. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007). [CrossRef]
  12. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef]
  13. Z. Jacob, L. V. Alekseyev, and E. E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006). [CrossRef]
  14. A. Salandrino and N. Engheta, “Subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74(7), 075103 (2006). [CrossRef]
  15. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006). [CrossRef]
  16. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef]
  17. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008). [CrossRef]
  18. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003). [CrossRef]
  19. J. A. Gordon and R. W. Ziolkowski, “The design and simulated performance of a coated nano-particle laser,” Opt. Express 15(5), 2622–2653 (2007). [CrossRef]
  20. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing-spaser,” Nat. Photonics 2(6), 351–354 (2008). [CrossRef]
  21. E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, “Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots,” Opt. Express 17(10), 8548–8551 (2009). [CrossRef]
  22. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef]
  23. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009). [CrossRef]
  24. A. K. Popov and V. M. Shalaev, “Compensating losses in negative-index metamaterials by optical parametric amplification,” Opt. Lett. 31(14), 2169–2171 (2006). [CrossRef]
  25. N. M. Litchinitser and V. M. Shalaev, “Metamaterials: Loss as a route to transparency,” Nat. Photonics 3(2), 75 (2009). [CrossRef]
  26. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008). [CrossRef]
  27. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008). [CrossRef]
  28. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009). [CrossRef]
  29. J. B. Pendry, “Time reversal and negative refraction,” Science 322(5898), 71–73 (2008). [CrossRef]
  30. A. N. Sudarkin and P. A. Demkovich, “Excitation of Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764 (1989).
  31. M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004). [CrossRef]
  32. S. A. Maier, “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun. 258(2), 295–299 (2006). [CrossRef]
  33. I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain,” Phys. Rev. B 70(15), 155416 (2004). [CrossRef]
  34. J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005). [CrossRef]
  35. G. Zhu, M. Mayy, M. Bahoura, B. A. Ritzo, H. V. Gavrilenko, V. I. Gavrilenko, and M. A. Noginov, “Elongation of surface plasmon polariton propagation length without gain,” Opt. Express 16(20), 15576–15583 (2008). [CrossRef]
  36. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008). [CrossRef]
  37. I. De Leon and P. Berini, “Theory of surface plasmon-polariton amplification in planar structures incorporating dipolar gain media,” Phys. Rev. B 78(16), 161401 (2008). [CrossRef]
  38. I. De Leon and P. Berini, “Modeling surface plasmon-polariton gain in planar metallic structures,” Opt. Express (to appear).
  39. M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8(11), 3998–4001 (2008). [CrossRef]
  40. M. Ambati, D. A. Genov, R. F. Oulton, and X. Zhang, ““Active Plasmonics: Surface Plasmon Interaction with optical emitters,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1395–1403 (2008). [CrossRef]
  41. N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85(21), 5040 (2004). [CrossRef]
  42. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006). [CrossRef]
  43. A. K. Sarychev and G. Tartakovsky, “Magnetic plasmonic metamaterials in actively pumped host medium and plasmonic nanolaser,” Phys. Rev. B 75(8), 085436 (2007). [CrossRef]
  44. S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67(20), 201101 (2003). [CrossRef]
  45. T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index materials: going optical,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1106–1115 (2006). [CrossRef]
  46. A. Fang, T. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79(24), 241104 (2009). [CrossRef]
  47. A. Fang, T. Koschny, and C. M. Soukoulis, “Lasing in metamaterial nanostructures”, arXiv:0907.1123v1 [physics.optics].
  48. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission in nanocrystal quantum dots,” Science 290(5490), 314–317 (2000). [CrossRef]
  49. F. Hide, B. J. Schwartz, M. A. Dias-Garcia, and A. J. Heeger, “Conjugated polymers as solid-state laser materials,” Synth. Met. 91(1-3), 35–40 (1997). [CrossRef]
  50. E. Desurvire, “Erbium-doped fiber amplifiers,” (John Wiley and Sons, New York, 1994).
  51. C. V. Shank, “Physics of dye lasers,” Rev. Mod. Phys. 47(3), 649–657 (1975). [CrossRef]
  52. A. Siegman, “Lasers,” (University Science Books, 1986).
  53. A. Taflove, and S. Hagness, “Computational electromagnetic: the finite-difference time-domain method,” 3rd edition, (Artech House, 2005).
  54. X. Ni, Z. Liu and A. V. Kildishev (2007), “Photonics DB: Optical Constants,” DOI: 10254/nanohub-r3692.5.
  55. The field distributions for samples 1 and 2 are similar for the pump wavelength and the chosen level of pumping because for that high pump-field, nearly all the electrons have left the lower (absorbing) level, so that the gain-composite is close to being transparent at all wavelengths.
  56. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002). [CrossRef]
  57. P. Kinsler and M. W. McCall, “Causality-based criteria for a negative refractive index must be used with care,” Phys. Rev. Lett. 101(16), 167401 (2008). [CrossRef]
  58. T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68(6), 065602 (2003). [CrossRef]
  59. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984). [CrossRef]
  60. W. L. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661 (1998).
  61. W. L. Vos, A. F. Koenderink, and I. S. Nikolaev, “Strong dependence of the optical emission rates of a two-level quantum emitter in any nanophotonic environment on the orientation of the transition dipole moment,” arXiv:0902.1862v1 [physics.optics].
  62. U. K. Chettiar, A. V. Kildishev, T. A. Klar, and V. M. Shalaev, “Negative index metamaterial combining magnetic resonators with metal films,” Opt. Express 14(17), 7872–7877 (2006). [CrossRef]
  63. A. K. Sarychev, R. C. McPhedran, and V. M. Shalaev, “Electrodynamics of metal-dielectric composites and electromagnetic crystals,” Phys. Rev. B 62(12), 8531–8539 (2000). [CrossRef]
  64. Z. Liu, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, “Translation of nanoantenna hot spots by a metal-dielectric composite superlens,” Appl. Phys. Lett. 95(3), 033114 (2009). [CrossRef]
  65. S. V. Zhukovsky and D. N. Chigrin, “Numerical modeling of lasing in microstructures,” Phys. Status Solidi, B Basic Res. 244(10), 3515–3527 (2007). [CrossRef]
  66. M. Wegener, J. L. García-Pomar, C. M. Soukoulis, N. Meinzer, M. Ruther, and S. Linden, “Toy model for plasmonic metamaterial resonances coupled to two-level system gain,” Opt. Express 16(24), 19785–19798 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited