OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 24084–24095

General properties of dielectric optical antennas

Jon A. Schuller and Mark L. Brongersma  »View Author Affiliations

Optics Express, Vol. 17, Issue 26, pp. 24084-24095 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (324 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using Mie theory we derive a number of general results concerning the resonances of spherical and cylindrical dielectric antennas. Specifically, we prove that the peak scattering cross-section of radiation-limited antennas depends only on the resonance frequency and thus is independent of refractive index and size, a result which is valid even when the resonator is atomic-scale. Furthermore, we derive scaling limits for the bandwidth of dielectric antennas and describe a cylindrical mode which is unique in its ability to support extremely large bandwidths even when the particle size is deeply subwavelength. Finally, we show that higher Q antennas may couple more efficiently to an external load, but the optimal absorption cross-section depends only on the resonance frequency.

© 2009 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(290.4020) Scattering : Mie theory
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:

Original Manuscript: September 28, 2009
Revised Manuscript: December 5, 2009
Manuscript Accepted: December 6, 2009
Published: December 17, 2009

Jon A. Schuller and Mark L. Brongersma, "General properties of dielectric optical antennas," Opt. Express 17, 24084-24095 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005). [CrossRef] [PubMed]
  2. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008). [CrossRef] [PubMed]
  3. F. Jäckel, A. A. Kinkhabwala, and W. E. Moerner, “Gold bowtie nanoantennas for surface enhanced Raman scattering under controlled electrochemical potential,” Chem. Phys. Lett. 446(4-6), 339–343 (2007). [CrossRef]
  4. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34(5), 686–688 (2009). [CrossRef] [PubMed]
  5. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009). [CrossRef]
  6. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006). [CrossRef] [PubMed]
  7. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008). [CrossRef]
  8. J. Li, A. Slandrino, and N. Engheta, “Shaping light beams in the nanometer scale: a Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76, 25403 (2007). [CrossRef]
  9. R. K. Mongia and P. Bhartia, “Dielectric resonator antennas-A review and general design relations for resonant frequency and bandwidth,” Int. J. Microwave Millimeter-Wave Comput.-Aided Eng. 4(3), 230–247 (1994). [CrossRef]
  10. R. C. J. Hsu, A. Ayazi, B. Houshmand, and B. Jalali, “All-dielectric photonic-assisted radio front-end technology,” Nat. Photonics 1(9), 535–538 (2007). [CrossRef]
  11. L. Cao, B. Nabet, and J. E. Spanier, “Enhanced Raman scattering from individual semiconductor nanocones and nanowires,” Phys. Rev. Lett. 96(15), 157402 (2006). [CrossRef] [PubMed]
  12. G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett. 8(5), 1341–1346 (2008). [CrossRef] [PubMed]
  13. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007). [CrossRef] [PubMed]
  14. K. Vynck, D. Felbacq, E. Centeno, A. I. Căbuz, D. Cassagne, and B. Guizal, “All-dielectric rod-type metamaterials at optical frequencies,” Phys. Rev. Lett. 102(13), 133901 (2009). [CrossRef] [PubMed]
  15. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics 3(11), 658–661 (2009). [CrossRef]
  16. L. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8(8), 643–647 (2009). [CrossRef] [PubMed]
  17. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006). [CrossRef] [PubMed]
  18. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Inter-Science, New York, 1998).
  19. G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, and V. Sandoghdar, “Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence,” Nat. Phys. 4(1), 60–66 (2008). [CrossRef]
  20. M. K. Tey, Z. Chen, S. A. Aljunid, B. Chng, F. Huber, G. Maslennikov, and C. Kurtsiefer, “Strong interaction between light and a single trapped atom without the need for a cavity,” Nat. Phys. 4(12), 924–927 (2008). [CrossRef]
  21. L. J. Chu, “Physical limitations of omni-directional antennas,” J. Appl. Phys. 19(12), 1163 (1948). [CrossRef]
  22. J. S. McLean, “A re-examination of the fundamental limits on the radiation Q of electrically small antennas,” IEEE Trans. Antenn. Propag. 44(5), 672 (1996). [CrossRef]
  23. J. D. Jackson, Classical Electrodynamics (Wiley and Sons, New York, 1999).
  24. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical Antennas,” Adv. Opt. Photon. 1(3), 438–483 (2009). [CrossRef]
  25. M. Kerker and E. Matijevic, “Scattering of electromagnetic waves from concentric infinite cylinders,” J. Opt. Soc. Am. 51(5), 506 (1961). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited