OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 24112–24129

Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator

Rohan D. Kekatpure, Aaron C. Hryciw, Edward S. Barnard, and Mark L. Brongersma  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 24112-24129 (2009)
http://dx.doi.org/10.1364/OE.17.024112


View Full Text Article

Enhanced HTML    Acrobat PDF (854 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a robust iterative technique for solving complex transcendental dispersion equations routinely encountered in integrated optics. Our method especially befits the multilayer dielectric and plasmonic waveguides forming the basis structures for a host of contemporary nanophotonic devices. The solution algorithm ports seamlessly from the real to the complex domain—i.e., no extra complexity results when dealing with leaky structures or those with material/metal loss. Unlike several existing numerical approaches, our algorithm exhibits markedly-reduced sensitivity to the initial guess and allows for straightforward implementation on a pocket calculator.

© 2009 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Physical Optics

History
Original Manuscript: October 13, 2009
Revised Manuscript: December 11, 2009
Manuscript Accepted: December 14, 2009
Published: December 17, 2009

Citation
Rohan D. Kekatpure, Aaron C. Hryciw, Edward S. Barnard, and Mark L. Brongersma, "Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator," Opt. Express 17, 24112-24129 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-24112


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. L. Brongersma and P. G. Kik, eds., Surface Plasmon Nanophotonics, Springer series in Optical Sciences (Springer, 2007) Vol. 131.
  2. R. Zia, J. A. Schuller, and M. L. Brongersma, "Plasmonics: The next chip-scale technology," Maters. Today 9, 20-27 (2006). [CrossRef]
  3. R. A. Pala, J. S. White, E. S. Barnard, J. Liu, and M. L. Brongersma, "Design of plasmonic thin-film solar cells with broadband absorption enhancements," Adv. Mater. 21, 1-6 (2009). [CrossRef]
  4. W. H. Press, S. A. Teukolsky,W. J. Vetterling, and B. P. Flannery, Numerical recipes in C++, The art of scientific computing (Cambridge University Press, 2002), 2nd ed.
  5. A. W. Snyder and J. Love, Optical Waveguide Theory (Science Paperbacks, 1983).
  6. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997). [CrossRef] [PubMed]
  7. J.-C. Weeber, Y. Lacroute, and A. Dereux, "Optical near-field distributions of surface plasmon waveguide modes," Phys. Rev. B 68, 115401 (2003). [CrossRef]
  8. R. Zia, A. Chandran, and M. L. Brongersma, "Dielectric waveguide model for guided surface polaritons," Opt. Lett. 30, 1473-1475 (2005). [CrossRef] [PubMed]
  9. R. Zia, J. A. Schuller, and M. L. Brongersma, "Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides," Phys. Rev. B 74, 165415 (2006). [CrossRef]
  10. R. Zia, M. D. Selker, and M. L. Brongersma, "Leaky and bound modes of surface plasmon waveguides," Phys. Rev. B 71, 165431 (2005). [CrossRef]
  11. G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  12. G. Veronis and S. Fan, "Guided subwavelength plasmonic mode supported by a slot in a thin metal film," Opt. Lett. 30, 3359-3361 (2005). [CrossRef]
  13. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006). [CrossRef] [PubMed]
  14. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, "Determination of guided and leaky modes in lossless and lossy planar multilayer optical waveguides: reflection pole method and wavevector density method," J. Lightwave Technol. 17, 929-941 (1999). [CrossRef]
  15. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004). [CrossRef]
  16. S. E. Kocabas¸, G. Veronis, D. A. B. Miller, and S. Fan, "Modal analysis and coupling in metal-insulator-metal waveguides," Phys. Rev. B 79, 035120 (2009). [CrossRef]
  17. J. P. McKelvey, "Simple iterative procedures for solving transcendental equations with the electronic slide rule," Am. J. Phys. 43, 331-334 (1975). [CrossRef]
  18. J. Dugundji and A. Granas, Fixed Point Theory (Springer-Verlag, 2003).
  19. C. R. Pollock, Fundamentals of Optoelectronics (McGraw-Hill Professional Publishing, 2003).
  20. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986). [CrossRef]
  21. Q1Q2. H. Raether, "Surface plasmons on smooth and rough surfaces and on gratings," Springer Tracts Mod. Phys. 111, 1-133 (1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited