OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 24137–24152

Calculation of femtosecond pulse laser induced damage threshold for broadband antireflective microstructure arrays

Xufeng Jing, Jianda Shao, Junchao Zhang, Yunxia Jin, Hongbo He, and Zhengxiu Fan  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 24137-24152 (2009)
http://dx.doi.org/10.1364/OE.17.024137


View Full Text Article

Enhanced HTML    Acrobat PDF (503 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In order to more exactly predict femtosecond pulse laser induced damage threshold, an accurate theoretical model taking into account photoionization, avalanche ionization and decay of electrons is proposed by comparing respectively several combined ionization models with the published experimental measurements. In addition, the transmittance property and the near-field distribution of the ‘moth eye’ broadband antireflective microstructure directly patterned into the substrate material as a function of the surface structure period and groove depth are performed by a rigorous Fourier model method. It is found that the near-field distribution is strongly dependent on the periodicity of surface structure for TE polarization, but for TM wave it is insensitive to the period. What’s more, the femtosecond pulse laser damage threshold of the surface microstructure on the pulse duration taking into account the local maximum electric field enhancement was calculated using the proposed relatively accurate theoretical ionization model. For the longer incident wavelength of 1064nm, the weak linear damage threshold on the pulse duration is shown, but there is a surprising oscillation peak of breakdown threshold as a function of the pulse duration for the shorter incident wavelength of 532nm.

© 2009 OSA

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(310.1210) Thin films : Antireflection coatings
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:
Thin Films

History
Original Manuscript: November 10, 2009
Revised Manuscript: December 10, 2009
Manuscript Accepted: December 10, 2009
Published: December 17, 2009

Citation
Xufeng Jing, Jianda Shao, Junchao Zhang, Yunxia Jin, Hongbo He, and Zhengxiu Fan, "Calculation of femtosecond pulse laser
induced damage threshold for broadband
antireflective microstructure arrays," Opt. Express 17, 24137-24152 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-24137


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in Si02 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994). [CrossRef]
  2. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995). [CrossRef] [PubMed]
  3. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond Optical Breakdown in Dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998). [CrossRef]
  4. A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-Pulse Laser Damage in Transparent Materials as a Function of Pulse Duration,” Phys. Rev. Lett. 82(19), 3883–3886 (1999). [CrossRef]
  5. J. Jasapara, A. V. V. Nampoothiri, W. Rudolph, D. Ristau, and K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001). [CrossRef]
  6. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005). [CrossRef]
  7. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett. 24(20), 1422–1424 (1999). [CrossRef] [PubMed]
  8. D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, “Update on the development of high performance antireflecting surface relief micro-structures,” Proc. SPIE 6545, 65450Y (2007). [CrossRef]
  9. W. H. Lowdermilk and D. Milam, “Graded-index antireflection surfaces for high-power laser applications,” Appl. Phys. Lett. 36(11), 891–893 (1980). [CrossRef]
  10. K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. Trubetskov, A. A. Tikhonravov, and A. S. Chirkin, “Investigations in the nonlinear behavior of dielectrics by using ultrashort pulses,” Proc. SPIE 5273, 501–514 (2004). [CrossRef]
  11. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).
  12. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002). [CrossRef] [PubMed]
  13. L. Yuan, Y. A. Zhao, G. Q. Shang, C. R. Wang, H. B. He, J. D. Shao, and Z. X. Fan, “Comparison of femtosecond and nanosecond laser-induced damage in HfO2 single-layer film and HfO2–SiO2 high reflector,” J. Opt. Soc. Am. B 24(3), 538–543 (2007). [CrossRef]
  14. M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, and D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17(15), 12269–12278 (2009). [CrossRef] [PubMed]
  15. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53(4), 1749–1761 (1996). [CrossRef]
  16. B. Rethfeld, “Unified model for the free-electron avalanche in laser-irradiated dielectrics,” Phys. Rev. Lett. 92(18), 187401 (2004). [CrossRef] [PubMed]
  17. A. Vaidyanathan, T. W. Walker, and A. H. Guenther, “The relative roles of avalanche multiplication and multiphoton absorption in laser-induced damage of dielectrics,” IEEE J. Quantum Electron. 16(1), 89–93 (1980). [CrossRef]
  18. P. N. Saeta and B. I. Greene, “Primary relaxation processes at the band edge of SiO2,” Phys. Rev. Lett. 70(23), 3588–3591 (1993). [CrossRef] [PubMed]
  19. M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, “Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics,” Phys. Rev. Lett. 82(11), 2394–2397 (1999). [CrossRef]
  20. T. Q. Jia, Z. Z. Xu, R. X. Li, D. H. Feng, X. X. Li, C. F. Cheng, H. Y. Sun, N. S. Xu, and H. Z. Wang, “Mechanisms in fs-laser ablation in fused silica,” J. Appl. Phys. 95(9), 5166–5171 (2004). [CrossRef]
  21. L. F. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14(10), 2758–2767 (1997). [CrossRef]
  22. S. J. Liu, Z. C. Shen, W. J. Kong, J. Shen, Z. X. Deng, Y. A. Zhao, J. D. Shao, and Z. X. Fan, “Optimization of near-field optical field of multi-layer dielectric gratings for pulse compressor,” Opt. Commun. 267(1), 50–57 (2006). [CrossRef]
  23. J. Y. Ma, S. J. Liu, Y. X. Jin, C. Xu, J. D. Shao, and Z. X. Fan, “Novel method for design of surface relief guided-mode resonant gratings at normal incidence,” Opt. Commun. 281(12), 3295–3300 (2008). [CrossRef]
  24. L. F. Li, “Note on the S-matrix propagation algorithm,” J. Opt. Soc. Am. A 20(4), 655–660 (2003). [CrossRef]
  25. D. M. Simanovskii, H. A. Schwettman, H. Lee, and A. J. Welch, “Midinfrared optical breakdown in transparent dielectrics,” Phys. Rev. Lett. 91(10), 107601 (2003). [CrossRef] [PubMed]
  26. D. Du, X. Liu, and G. Mourou, “Reduction of multi-photon ionization in dielectrics due to collisions,” Appl. Phys. B 63, 617–621 (1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited