OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 24224–24233

Sub-wavelength nanofluidics in photonic crystal sensors

Min Huang, Ahmet Ali Yanik, Tsung-Yao Chang, and Hatice Altug  »View Author Affiliations

Optics Express, Vol. 17, Issue 26, pp. 24224-24233 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (341 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a novel sensor scheme combining nano-photonics and nano-fluidics on a single platform through the use of free-standing photonic crystals. By harnessing nano-scale openings, we theoretically and experimentally demonstrate that both fluidics and light can be manipulated at sub-wavelength scales. Compared to the conventional fluidic channels, we actively steer the convective flow through the nanohole openings for effective delivery of the analytes to the sensor surface. We apply our method to detect refractive index changes in aqueous solutions. Bulk measurements indicate that active delivery of the convective flow results in better sensitivities. The sensitivity of the sensor reaches 510 nm/RIU for resonance located around 850 nm with a line-width of ~10 nm in solution. Experimental results are matched very well with numerical simulations. We also show that cross-polarization measurements can be employed to further improve the detection limit by increasing the signal-to-noise ratio.

© 2009 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(260.5740) Physical optics : Resonance
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(220.4241) Optical design and fabrication : Nanostructure fabrication
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Photonic Crystals

Original Manuscript: October 21, 2009
Revised Manuscript: November 9, 2009
Manuscript Accepted: November 9, 2009
Published: December 18, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

Min Huang, Ahmet Ali Yanik, Tsung-Yao Chang, and Hatice Altug, "Sub-wavelength nanofluidics in photonic crystal sensors," Opt. Express 17, 24224-24233 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. N. Shipway, E. Katz, and I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem 1(1), 18–52 (2000). [CrossRef]
  2. R. Raiteria, M. Grattarola, and R. Berge, “Micromechanics senses biomolecules,” Materials Today 5(1), 22–29 (2002). [CrossRef]
  3. D. Erickson, S. Manda, H. J. Allen, Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale.” Microfluid. Nanofluid. 4(1–2), 33–52 (2007). [CrossRef]
  4. P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip, Volume 7(10), 1238–1255 (2007). [CrossRef]
  5. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nature Photon. 1(2), 106–114 (2007). [CrossRef]
  6. B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: A review,” Analytica Chimica Acta 601(2), 141–155 (2007). [CrossRef] [PubMed]
  7. P. E. Sheehan and L. J. Whitman, “Detection limits for nanoscale biosensors,” Nano Lett. 5(4), 803–807 (2005). [CrossRef] [PubMed]
  8. J. Bishop, S. Blair, and A. Chagovetz, “Convective flow effects on DNA biosensors,” Biosens. Bioelectron. 22(9-10), 2192–2198 (2007). [CrossRef]
  9. T. M. Squires, R. J. Messinger, and S. R. Manalis, “Making it stick: convection, reaction and diffusion in surface-based biosensors,” Nature Biotechnol. 26(4), 417–426 (2008). [CrossRef]
  10. J. P. Golden, T. M. Floyd-Smith, D. R. Mott, and F. S. Ligler, “Target delivery in a microfluidic immunosensor,” Biosens. Bioelectron. 22(11Issue 11), 2763–2767 (2007). [CrossRef] [PubMed]
  11. R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Applied Optics, Volume 40(31Issue 31), 5742–5747 (2001). [CrossRef]
  12. A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “A Nanoscale Optical Biosensor: The Long Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles,” J. Phys. Chem. B 108(1), 109–116 (2004). [CrossRef]
  13. A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors.” Anal. Bioanal. Chem. 379(7–8), 920–930 (2004). [CrossRef] [PubMed]
  14. A. D. Leebeeck, L. K. Swaroop Kumar, V. D. Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-Chip Surface-Based Detection with Nanohole Arrays,” Anal. Chem. 79(11), 4094–4100 (2007). [CrossRef] [PubMed]
  15. A. Artar, A. A. Yanik, and H. Altug, “Fabry–Pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phy. Lett. 95(5), 051105 (2009). [CrossRef]
  16. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004). [CrossRef] [PubMed]
  17. H. Altug and J. Vuckovic, “Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays,” Opt. Lett. 30(9), 982 (2005). [CrossRef] [PubMed]
  18. N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007). [CrossRef] [PubMed]
  19. L. Shi, P. Pottier, Y.-A. Peter, and M. Skorobogatiy, “Guided-mode resonance photonic crystal slab sensors based on bead monolayer geometry,” Opt. Express 16(22), 17962–17971 (2008). [CrossRef] [PubMed]
  20. O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 2–9 (2007).
  21. D. Nedelkov and R. W. Nelson, “Surface plasmon resonance mass spectrometry: recent progress and outlooks,” Trends in Biotechnology, Volume 21(7Issue 7), 301–305 (2003). [CrossRef]
  22. S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008). [CrossRef] [PubMed]
  23. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities.” Science 317(5839), 783–787 (2007). [CrossRef] [PubMed]
  24. S. Chana, Y. Li, L. J. Rothberg, B. L. Miller, and P. M. Fauchet, “Nanoscale silicon microcavities for biosensing.” Mat. Scie. Engin. C 15(1–2), 277–282 (2001). [CrossRef]
  25. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002). [CrossRef]
  26. I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sensors 8(3), 274–280 (2008). [CrossRef]
  27. K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31(10), (1528–1530).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (415 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited