OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 24234–24243

Soft-landing and optical characterization of a preselected single fluorescent particle on a tapered optical fiber

Markus Gregor, Alexander Kuhlicke, and Oliver Benson  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 24234-24243 (2009)
http://dx.doi.org/10.1364/OE.17.024234


View Full Text Article

Enhanced HTML    Acrobat PDF (716 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Tapered optical fibers offer easy access to the evanescent field of their guided modes which is ideal for sensing applications. We introduce a soft-landing technique utilizing a linear Paul trap to select and place a single microparticle on the surface of a tapered optical fiber. This approach allows on-demand functionalization of fragile nanophotonic components with arbitrary particles, e.g., for advanced nanosensors.

© 2009 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(130.3120) Integrated optics : Integrated optics devices
(240.6490) Optics at surfaces : Spectroscopy, surface

ToC Category:
Sensors

History
Original Manuscript: October 7, 2009
Revised Manuscript: November 20, 2009
Manuscript Accepted: November 20, 2009
Published: December 18, 2009

Citation
Markus Gregor, Alexander Kuhlicke, and Oliver Benson, "Soft-landing and optical characterization of a preselected single fluorescent particle on a tapered optical fiber," Opt. Express 17, 24234-24243 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-24234


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Brambilla, V. Finazzi, and D. Richardson, "Ultra-low-loss optical fiber nanotapers," Opt. Express 12, 2258- 2263 (2004), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-12-10-2258. [CrossRef] [PubMed]
  2. F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, "Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers," Opt. Express 15, 11952-11958 (2007), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-19-11952. [CrossRef] [PubMed]
  3. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, "Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence," Opt. Express 15, 5431-5438 (2007), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-9-5431. [CrossRef] [PubMed]
  4. J. Corres, J. Bravo, I. Matias, and F. Arregui, "Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms," IEEE Photon. Technol. Lett. 18, 935 (2006). [CrossRef]
  5. J. Villatoro, and D. Monzon-Hernandez, "Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers," Opt. Express 13, 5087-5092 (2005), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-13-5087. [CrossRef] [PubMed]
  6. M. Gregor, R. Henze, T. Schroder, and O. Benson, "On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator," Appl. Phys. Lett. 95, 153110 (2009). [CrossRef]
  7. P. E. Barclay, C. Santori, K. Fu, R. G. Beausoleil, and O. Painter, "Coherent interference effects in a nano-assembled diamond NV center cavity-QED system," Opt. Express 17, 8081 (2009), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-17-10-8081. [CrossRef] [PubMed]
  8. W. Paul, "Electromagnetic traps for charged and neutral particles," Rev. Mod. Phys. 62, 531 (1990).
  9. W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, "Single-Atom Optical Clock with High Accuracy," Phys. Rev. Lett. 97, 1-4 (2006). [CrossRef]
  10. F. Schmidt-Kaler, H. Haffner, S. Gulde, M. Riebe, G. P. T. Lancaster, T. Deuschle, C. Becher, W. Hansel, J. Eschner, C. Roos, and R. Blatt, "How to realize a universal quantum gate with trapped ions," Appl. Phys. B 77, 789-796 (2003). [CrossRef]
  11. J. Cirac and P. Zoller, "Quantum Computations with Cold Trapped Ions," Phys. Rev. Lett. 74, 4091 (1995). [CrossRef] [PubMed]
  12. W. Schnitzler, N. M. Linke, R. Fickler, J. Meijer, F. Schmidt-Kaler, and K. Singer, "Deterministic Ultracold Ion Source Targeting the Heisenberg Limit," Phys. Rev. Lett. 102, 1-4 (2009). [CrossRef]
  13. S. Schlemmer, J. Illemann, S. Wellert, and D. Gerlich, "Nondestructive high-resolution and absolute mass determination of single charged particles in a three-dimensional quadrupole trap," J. Appl. Phys. 90, 5410 (2001). [CrossRef]
  14. S. Arnold and L. Folan, "Fluorescence spectrometer for a single electrodynamically levitated microparticle," Rev. Sci. Instrum. 57, 2250 (1986). [CrossRef]
  15. J. D. Prestage, G. J. Dick, and L. Maleki, "New ion trap for frequency standard applications," J. Appl. Phys. 66, 1013 (1989). [CrossRef]
  16. H. C. Nagerl,W. Bechter, J. Eschner, F. Schmidt-Kaler, and R. Blatt, "Ion strings for quantum gates," Appl. Phys. B 66, 603-608 (1998). [CrossRef]
  17. M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, and D. J. Wineland, "Ionic crystals in a linear Paul trap," Phys. Rev. A 45, 6493 (1992). [CrossRef] [PubMed]
  18. D. Kielpinski, C. Monroe, and D. J. Wineland, "Architecture for a large-scale ion-trap quantum computer," Nature 417, 709 (2002). [CrossRef] [PubMed]
  19. S. Schulz, U. Poschinger, K. Singer, and F. Schmidt-Kaler, "Optimization of segmented linear Paul traps and transport of stored particles," Fortschr. Phys. 54, 648-665 (2006). [CrossRef]
  20. M. Nasse and C. Foot, "Influence of background pressure on the stability region of a Paul trap," European Journal of Physics 22, 563-573 (2001). [CrossRef]
  21. S. J. Gaskell, "Electrospray: Principles and Practice," Journal of Mass Spectrometry 32, 677-688 (1997). [CrossRef]
  22. P. Kebarle and L. Tang, "From Ions in Solution to Ions in the Gas Phase-The Mechanism of Electrospray Mass Spectrometry," Analytical Chemistry 65, 972 (1993). [CrossRef]
  23. M. Sumetsky, Y. Dulashko, and A. Hale, "Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer," Opt. Express 12, 3521-3531 (2004), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-12-15-3521. [CrossRef] [PubMed]
  24. J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy and S. G. Nic Chormaic, "Heat-and-pull rig for fiber taper fabrication," Rev. Sci. Instrum. 77, 083105 (2006) [CrossRef]
  25. F. Orucevic, V. Lefevre-Seguin, and J. Hare, "Transmittance and near-field characterization of sub-wavelength tapered optical fibers," Opt. Express 15, 13624-13629 (2007), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-21-13624. [CrossRef] [PubMed]
  26. H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, "Polarization-discriminated spectra of a fiber-microsphere system," Appl. Phys. Lett. 89, 121107 (2006), URL http://link.aip.org/link/?APL/89/121107/1. [CrossRef]
  27. URL www.physik.hu-berlin.de/nano/movie.
  28. T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo,T. H. Oosterkamp, and R. Hanson, "Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center," Appl. Phys. Lett. 94, 173104 (2009),URL http://link.aip.org/link/?APL/94/173104/1. [CrossRef]
  29. E. Ampem-Lassen, D. A. Simpson, B. C. Gibson, S. Trpkovski, F. M. Hossain, S. T. Huntington, K. Ganesan, L. C. L. Hollenberg, and S. Prawer, "Nano-manipulation of diamond-based single photon sources", arXiv:0905.2784v1 (2009), URL http://arxiv.org/abs/0905.2784v1.
  30. M. Barth, N. Nusse, B. Lochel,and O. Benson, "Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity", Opt. Lett. 34, 1108-1110 (2009), URL http://ol.osa.org/abstract.cfm?URI=ol-34-7-1108. [CrossRef] [PubMed]
  31. I. D. Chremmos and N. K. Uzunoglu, "Integral equation analysis of scattering by a spherical microparticle coupled to a subwavelength-diameter wire waveguide," J. Opt. Soc. Am. A 23, 461-467 (2006), URL http://josaa.osa.org/abstract.cfm?URI=josaa-23-2-461. [CrossRef]
  32. J. Bures and R. Ghosh, "Power density of the evanescent field in the vicinity of a tapered fiber," J. Opt. Soc. Am. A 16, 1992-1996 (1999), URL http://josaa.osa.org/abstract.cfm?URI=josaa-16-8-1992. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (3758 KB)      QuickTime
» Media 2: AVI (2599 KB)      QuickTime
» Media 3: AVI (3677 KB)      QuickTime
» Media 4: AVI (1247 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited