OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 24244–24249

A 24 km fiber-based discretely signaled continuous variable quantum key distribution system

Quyen Dinh Xuan, Zheshen Zhang, and Paul L. Voss  »View Author Affiliations

Optics Express, Vol. 17, Issue 26, pp. 24244-24249 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (279 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a continuous variable key distribution system that achieves a final secure key rate of 3.45 kilobits/s over a distance of 24.2 km of optical fiber. The protocol uses discrete signaling and post-selection to improve reconciliation speed and quantifies security by means of quantum state tomography. Polarization multiplexing and a frequency translation scheme permit transmission of a continuous wave local oscillator and suppression of noise from guided acoustic wave Brillouin scattering by more than 27 dB.

© 2009 Optical Society of America

OCIS Codes
(270.5565) Quantum optics : Quantum communications
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

Original Manuscript: October 6, 2009
Revised Manuscript: November 22, 2009
Manuscript Accepted: December 14, 2009
Published: December 18, 2009

Quyen Dinh Xuan, Zheshen Zhang, and Paul L. Voss, "A 24 km fiber-based discretely signaled continuous variable quantum key distribution system," Opt. Express 17, 24244-24249 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett and G. Grassard, "Quantum cryptography: public key distribution and coin tossing," in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, New York, 1984), 175- 179.
  2. A. K. Ekert, "Quantum cryptography based on Bell’s theorem," Phys. Rev. Lett. 67, 661-663 (1991). [CrossRef] [PubMed]
  3. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, (Cambridge University Press, UK, 2000).
  4. N. J. Cerf, M. Levy, and G. Van Assche, "Quantum distribution of Gaussian keys using squeezed states," Phys. Rev. A 63, 052311 (2001). [CrossRef]
  5. F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, "Quantum key distribution using gaussian-modulated coherent states," Nature 421, 238-241 (2003). [CrossRef] [PubMed]
  6. S. Lorenz, N. Korolkova, and G. Leuchs, "Continuous-variable quantum key distribution using polarization encoding and post selection," Appl. Phys. B 79, 273-277 (2004). [CrossRef]
  7. J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, "Quantum key distribution over 25 km with an all-fiber continuous-variable system," Phys. Rev. A 76, 042305 (2007). [CrossRef]
  8. S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, "Field test of a continuous-variable quantum key distribution prototype," New. J. Phys. 11, 045023 (2009). [CrossRef]
  9. B. Qi, L. L. Huang, L. Qian, and H. K. Lo, "Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers," Phys. Rev. A 76, 052323 (2007). [CrossRef]
  10. A. M. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, and P. K. Lam, "No-switching quantum key distribution using broadband modulated coherent light," Phys. Rev. Lett. 95, 180503 (2005). [CrossRef] [PubMed]
  11. T. Symul, D.J. Alton, S. M. Assad, A. M. Lance, C. Weedbrook, T. C. Ralph, and P. K. Lam, "Experimental demonstration of post-selection-based continuous-variable quantum key distribution in the presence of Gaussian noise," Phys. Rev. A 76, 030303(R) (2007). [CrossRef]
  12. S. L. Braunstein and P. Van Loock, "Quantum information with continuous variables," Rev. Mod. Phys. 77, 513-577 (2005). [CrossRef]
  13. F. Grosshans and P. Grangier, "Reverse reconciliation protocols for quantum cryptography with continuous variables," http://www.arxiv.org/abs/quant-ph/0204127v1.
  14. F. Grosshans, "Collective attacks and unconditional security in continuous variable quantum key distribution," Phys. Rev. Lett. 94, 020504 (2005). [CrossRef] [PubMed]
  15. M. Navascues and A. Acin, "Security bounds for continuous variable quantum key distribution," Phys. Rev. Lett. 94, 020505 (2005). [CrossRef] [PubMed]
  16. R. Garcia-Patron and N. J. Cerf, "Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution," Phys. Rev. Lett. 97, 190503 (2006). [CrossRef] [PubMed]
  17. M. Navascues, F. Grosshans, and A. Acin, "Optimality of Gaussian attacks in continuous-variable quantum cryptography," Phys. Rev. Lett. 97, 190502 (2006). [CrossRef] [PubMed]
  18. R. Namiki and T. Hirano, "Efficient-phase-encoding protocols for continuous-variable quantum key distribution using coherent states and postselection," Phys. Rev. A 74, 032302 (2006). [CrossRef]
  19. M. Heid and N. Lutkenhaus, "Security of coherent-state quantum cryptography in the presence of Gaussian noise," Phys. Rev. A 76, 022313 (2007). [CrossRef]
  20. A. Leverrier and P. Grangier, "Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation," Phys. Rev. Lett. 102, 180504 (2009). [CrossRef] [PubMed]
  21. Y. Zhao, M. Heid, J. Rigas, and N. Lutkenhaus, "Asymptotic security of binary modulated continuous-variable quantum key distribution under collective attacks," Phys. Rev. A 79, 012307 (2009). [CrossRef]
  22. Z. Zhang and P. L. Voss, "Security of a discretely signaled continuous variable quantum key distribution protocol for high rate systems," Opt. Exp. 17, 12090-12108 (2009). [CrossRef]
  23. A. J. Poustie, "Guided acoustic-wave Brillouin scattering with optical pulses," Opt. Lett. 17, 574-576 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited