OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 24250–24260

Compact and passive-alignment 4-channel × 2.5-Gbps optical interconnect modules based on silicon optical benches with 45° micro-reflectors

Hsu-Liang Hsiao, Hsiao-Chin Lan, Chia-Chi Chang, Chia-Yu Lee, Siou-Ping Chen, Chih-Hung Hsu, Shuo-Fu Chang, Yo-Shen Lin, Feng-Ming Kuo, Jin-Wei Shi, and Mount-Learn Wu  »View Author Affiliations

Optics Express, Vol. 17, Issue 26, pp. 24250-24260 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1077 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Compact and passive-alignment 4-channel × 2.5-Gbps optical interconnect modules are developed based on the silicon optical benches (SiOBs) of 5 × 5 mm2. A silicon-based 45° micro-reflector and V-groove arrays are fabricated on the SiOB using anisotropic wet etching. Moreover, high-frequency transmission lines of 4 channel × 2.5 Gbps, and bonding pads with Au/Sn eutectic solder are also deposited on the SiOB. The vertical-cavity surface-emitting laser (VCSEL) array and photo-detector (PD) array are flip-chip assembled on the intended positions. The multi-mode fiber (MMF) ribbons are passively aligned and mounted onto the V-groove arrays. Without the assistance of additional optics, the coupling efficiencies of VCSEL-to-MMF in the transmitting part and MMF-to-PD in the receiving part can be as high as −5.65 and −1.98 dB, respectively, under an optical path of 180 μm. The 1-dB coupling tolerance of greater than ± 20 μm is achieved for both transmitting and receiving parts. Eye patterns of both parts are demonstrated using 15-bit PRBS at 2.5 Gbps.

© 2009 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(200.4650) Optics in computing : Optical interconnects
(230.4040) Optical devices : Mirrors
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Integrated Optics

Original Manuscript: October 7, 2009
Revised Manuscript: December 14, 2009
Manuscript Accepted: December 14, 2009
Published: December 18, 2009

Hsu-Liang Hsiao, Hsiao-Chin Lan, Chia-Chi Chang, Chia-Yu Lee, Siou-Ping Chen, Chih-Hung Hsu, Shuo-Fu Chang, Yo-Shen Lin, Feng-Ming Kuo, Jin-Wei Shi, and Mount-Learn Wu, "Compact and passive-alignment 4-channel × 2.5-Gbps optical interconnect modules based on silicon optical benches with 45° micro-reflectors," Opt. Express 17, 24250-24260 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. E. Lemoff, M. E. Ali, G. Panotopoulos, G. M. Flower, B. Madhavan, A. F. J. Levi, and D. W. Dolfi, “MAUI: Enabling fiber-to-processor with parallel multiwavelength optical interconnects,” IEEE J. Lightwave Technol. 22(9), 2043–2054 (2004). [CrossRef]
  2. S. Hiramatsu and T. Mikawa, “Optical design of active interposer for high-speed chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 24(2), 927–934 (2006).
  3. M. Aljada, K. E. Alameh, Y. T. Lee, and I. S. Chung, “High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors,” Opt. Express 14(15), 6823–6836 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-15-6823 . [CrossRef] [PubMed]
  4. X. Wang and R. T. Chen, “Fully embedded board level optical interconnects—From point-to-point interconnection to optical bus architecture,” Proc. SPIE 6899, 6899031–6899039 (2008).
  5. D. V. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Chateauneuf, A. G. Kirk, and J. S. Ahearn, “256-channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS,” IEEE J. Lightwave Technol. 19(8), 1093–1103 (2001). [CrossRef]
  6. L. Schares, J. A. Kash, F. E. Doany, C. L. Schow, C. Schuster, D. M. Kuchta, P. K. Pepeljugoski, J. M. Trewhella, C. W. Baks, R. A. John, L. Shan, Y. H. Kwark, R. A. Budd, P. Chiniwalla, F. R. Libsch, J. Rosner, C. K. Tsang, C. S. Patel, J. D. Schaub, R. Dangel, F. Horst, B. J. Offrein, D. Kucharski, D. Guckenberger, S. Hegde, H. Nyikal, C.-K. Lin, A. Tandon, G. R. Trott, M. Nystrom, D. P. Bour, M. R. T. Tan, and D. W. Dolfi, “Terabus: Terabit/second-class card-level optical interconnect technologies,” IEEE J. Sel. Top. Quantum Electron. 12(5), 1032–1044 (2006). [CrossRef]
  7. R. Heming, L. C. Wittig, P. Dannberg, J. Jahns, E. B. Kley, and M. Gruber, “Efficient planar-integrated free-space optical interconnects fabricated by a combination of binary and analog lithography,” IEEE J. Lightwave Technol. 26(14), 2136–2141 (2008). [CrossRef]
  8. P. Lukowicz, J. Jahns, R. Barbieri, P. Benabes, T. Bierhoff, A. Gauthier, M. Jarczynski, G. A. Russell, J. Schrage, W. Sullau, J. F. Snowdon, M. Wirz, and G. Troster, “Optoelectronic interconnection technology in the HOLMS system,” IEEE J. Sel. Top. Quantum Electron. 9(2), 624–635 (2003). [CrossRef]
  9. H. L. Althaus, W. Gramann, and K. Panzer, “Microsystems and wafer processes for volume production of highly reliable fiber optic components for telecom- and datacom-application,” IEEE Trans. on Compon. Packag. and Manufact. Technol. pt. B, 21(2), 147–156 (1998). [CrossRef]
  10. H. Takahara, “Optoelectronic multichip module packaging technologies and optical input/output interface chip-level packages for the next generation of hardware systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 443–451 (2003). [CrossRef]
  11. D. Shimura, R. Sekikawa, K. Kotani, M. Uekawa, Y. Maeno, K. Aoyama, H. Sasaki, T. Takamori, K. Masuko, and S. Nakaya, “Bidirectional optical subassembly with prealigned silicon microlens and laser diode,” IEEE Photon. Technol. Lett., vol.18, no.16, pp. 1738–1740, Aug. (2006).
  12. Y. Ishii, N. Tanaka, T. Sakamoto, and H. Takahara, “Fully SMT-compatible optical –I/O package with microlens array interface,” IEEE J. Lightwave Technol. 21(1), 275–280 (2003). [CrossRef]
  13. B. S. Rho, S. Kang, H. S. Cho, H. H. Park, S. W. Ha, and B. H. Rhee, “PCB-compatible optical interconnection using 45°-ended connection rods and via-holed waveguides,” IEEE J. Lightwave Technol. 22(9), 2128–2134 (2004). [CrossRef]
  14. F. Wang, F. Liu, and A. Adibi, “45 degree polymer micromirror integration for board-level three-dimensional optical interconnects,” Opt. Express 17(13), 10514–10521 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-13-10514 . [CrossRef] [PubMed]
  15. S. H. Hwang, J. Y. An, M. H. Kim, W. C. Choi, S. R. Cho, S. H. Lee, H. S. Cho, and H.-H. Park, “VCSEL array module using (111) facet mirrors of a V-grooved silicon optical bench and angled fibers,” IEEE Photon. Technol. Lett. 17(2), 477–479 (2005). [CrossRef]
  16. I. Zubel, “Silicon anisotropic etching in alkaline solutions III: On the possibility of spatial structures forming in the course of Si(100) anisotropic etching in KOH and KOH+IPA solutions,” Sens. Actuators A Phys. 84(1), 116–125 (2000). [CrossRef]
  17. H. C. Lan, H. L. Hsiao, C. C. Chang, C. H. Hsu, C. M. Wang, and M. L. Wu, “Monolithic integration of elliptic-symmetry diffractive optical element on silicon-based 45 ° micro-reflector,” Opt. Express 17(23), 20938–20944 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-23-20938 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited