OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 24261–24268

Lithium niobate photonic wires

H. Hu, R. Ricken, and W. Sohler  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 24261-24268 (2009)
http://dx.doi.org/10.1364/OE.17.024261


View Full Text Article

Enhanced HTML    Acrobat PDF (552 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

LN photonic wires of cross-section dimensions down to 1 × 0.73 µm2 were fabricated by Ar milling of a single-crystalline LiNbO3 (LN) film bonded to a SiO2/LiNbO3 substrate. Mode intensity distributions, propagation losses, and group indices of refraction were measured at 1.55 µm wavelength and compared with simulation results. Moreover, effective mode indices and end face reflectivities were numerically evaluated. The waveguide of 1 µm top width is the smallest LN photonic wire reported to date; it has a mode size of ~0.4 µm2 (0.5 µm2) only and propagation losses of 9.9 dB/cm (12.9 dB/cm) for qTM (qTE) polarization.

© 2009 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.3130) Integrated optics : Integrated optics materials
(160.3730) Materials : Lithium niobate
(230.7370) Optical devices : Waveguides
(310.0310) Thin films : Thin films

ToC Category:
Integrated Optics

History
Original Manuscript: October 7, 2009
Revised Manuscript: December 14, 2009
Manuscript Accepted: December 14, 2009
Published: December 18, 2009

Citation
H. Hu, R. Ricken, and W. Sohler, "Lithium niobate photonic wires," Opt. Express 17, 24261-24268 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-24261


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005). [CrossRef]
  2. D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007). [CrossRef]
  3. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007). [CrossRef]
  4. F. Schrempel, T. Gischkat, H. Hartung, T. Höche, E. B. Kley, A. Tünnermann, and W. Wesch, “Ultrathin membranes in x-cut lithium niobate,” Opt. Lett. 34(9), 1426–1428 (2009). [CrossRef] [PubMed]
  5. T. Takaoka, M. Fujimura, and T. Suhara, “Fabrication of ridge waveguides in LiNbO3 thin film crystal by proton-exchange accelerated etching,” Electron. Lett. 45(18), 940–941 (2009). [CrossRef]
  6. G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009). [CrossRef]
  7. G. W. Burr, S. Diziain, and M.-P. Bernal, “Theoretical study of lithium niobate slab waveguides for integrated optics applications,” Opt. Mater. 31(10), 1492–1497 (2009). [CrossRef]
  8. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006). [CrossRef]
  9. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985). [CrossRef]
  10. W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88(C), 990–997 (2005). [CrossRef]
  11. H. Hu, R. Ricken, and W. Sohler, Large area, crystal-bonded LiNbO3 thin films and ridge waveguides of high refractive index contrast, Topical Meeting “Photorefractive Materials, Effects, and Devices - Control of Light and Matter” (PR 09), Bad Honnef, Germany 2009. On the poster, presented to PR 09, a photograph of a 3 inch LNOI wafer was shown. A manuscript to describe the LNOI-technology developed is in preparation.
  12. A. Boudrioua, J. C. Loulergue, F. Laurell, and P. Moretti, “Nonlinear optical properties of (H+, He+) - implanted planar waveguides in Z-cut lithium niobate: annealing effect,” J. Opt. Soc. Am. B 18(12), 1832–1840 (2001). [CrossRef]
  13. H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B . submitted.
  14. P. G. Glöersen, “Ion beam etching,” J. Vac. Sci. Technol. 12(1), 28–35 (1975).
  15. G. Carter, “The physics and applications of ion beam erosion,” J. Phys. D Appl. Phys. 34(3), 201 (2001). [CrossRef]
  16. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985). [CrossRef]
  17. Z. M. Zhu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10(17), 853–864 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?uri=OE-10-17-853 . [PubMed]
  18. Lumerical Solutions, http://www.lumerical.com/
  19. D. Labukhin and X. Li, “Three-dimensional finite-difference time-domain simulation of facet reflection through parallel computing,” J. Comput. Electron. 4(1-2), 15–19 (2005). [CrossRef]
  20. T. Ikegami, “Reflectivity of mode at facet and oscillation mode in double heterostructure injection lasers,” IEEE J. Quantum Electron. 8(6), 470–476 (1972). [CrossRef]
  21. H. A. Jamid and M. Z. M. Khan, “3-D full-vectorial analysis of strong optical waveguide discontinuities using Pade approximants,” IEEE J. Quantum Electron. 43(4), 343–349 (2007). [CrossRef]
  22. F. Grillot, L. Viv, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol. 24(2), 891–896 (2006). [CrossRef]
  23. E. Dulkeith, F. N. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-9-3853 . [CrossRef] [PubMed]
  24. A. Sakai, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B4B), L383–L385 (2001). [CrossRef]
  25. D. Duchesne, P. Cheben, R. Morandotti, B. Lamontagne, D.-X. Xu, S. Janz, and D. Christodoulides, “Group-index birefringence and loss measurements in silicon-on-insulator photonic wire waveguides,” Opt. Eng. 46(10), 104602 (2007). [CrossRef]
  26. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide-doped lithium niobate,” J. Opt. Soc. Am. B 14(12), 3319–3322 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited