OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 24282–24287

Quantum cascade laser gain enhancement by front facet illumination

Gang Chen, Clyde G. Bethea, and Rainer Martini  »View Author Affiliations

Optics Express, Vol. 17, Issue 26, pp. 24282-24287 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (189 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical gain enhancement is demonstrated in a standard mid-infrared quantum cascade laser in pulse operation, using a near infrared illumination on the laser facet. An increase in the laser emission is observed, as well as greater dynamic range, threshold reduction, and a blue shift in the laser cavity modes. The optically induced gain increase allows for optical switching of the laser. All the changes have a nonlinear dependency on the illumination optical power and are attributed to the free carrier concentration increase and the electron transport change in the active region due to the near infrared illumination.

© 2009 OSA

OCIS Codes
(230.4110) Optical devices : Modulators
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade
(250.6715) Optoelectronics : Switching

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 14, 2009
Revised Manuscript: October 12, 2009
Manuscript Accepted: October 12, 2009
Published: December 18, 2009

Gang Chen, Clyde G. Bethea, and Rainer Martini, "Quantum cascade laser gain enhancement by front facet illumination," Opt. Express 17, 24282-24287 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science, New Series 264, 553–556 (1994).
  2. K. Frank, Tittel, Yury A. Bakhirkin, Robert F. Curl, Anatoliy A. Kosterev, Matthew R. McCurdy, Stephen G. So and Gerard Wysocki, “Laser Based Chemical Sensor Technology: Recent Advances and Applications” in Advanced Environmental Monitoring, Young J. Kim and Ulrich Platt Editor, Springer Netherlands (2008)
  3. R. Martini and E. A. Whittaker, “Quantum Cascade Laser Based Free Space Optical Communications,” J. Opt. Fiber. Commun. Rep. 2(4), 279–292 (2005). [CrossRef]
  4. V. D. Jovanović, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, E. H. Linfield, H. Page, X. Marcadet, C. Sirtori, C. Worrall, H. E. Beere, and D. A. Ritchie, “Mechanisms of dynamic range limitations in GaAs/AlGaAs quantum-cascade lasers: Influence of injector doping,” Appl. Phys. Lett. 86(21), 211117 (2005). [CrossRef]
  5. A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006). [CrossRef] [PubMed]
  6. H. Page, P. Collot, A. de Rossi, V. Ortiz, and C. Sirtori, “High reflectivity metallic mirror coatings for mid-infrared (λ ≈ 9 μm) unipolar semiconductor lasers,” Semicond. Sci. Technol. 17(12), 1312–1316 (2002). [CrossRef]
  7. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser with plasmon-enhanced waveguide operating at 8.4 µm wavelength,” Appl. Phys. Lett. 66(24), 3242 (1995). [CrossRef]
  8. D. Dey, W. Wu, O. G. Memis, and H. Mohseni, “Injectorless quantum cascade laser with low voltage defect and improved thermal performance grown by metal-organic chemical-vapor deposition,” Appl. Phys. Lett. 94(8), 081109 (2009). [CrossRef]
  9. M. D. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J.-Y. Fan, and C. Gmachl, “Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy,” Appl. Phys. Lett. 94(25), 251114 (2009). [CrossRef]
  10. A. J. Hoffman, S. Schartner, S. S. Howard, K. J. Franz, F. Towner, and C. Gmachl, “Low voltage-defect quantum cascade laser with heterogeneous injector regions,” Opt. Express 15(24), 15818–15823 (2007). [CrossRef] [PubMed]
  11. P. T. Keightley, L. R. Wilson, J. W. Cockburn, M. S. Skolnick, J. C. Clark, R. Grey, G. Hill, and M. Hopkinson, “Improved performance from GaAs-AlGaAs quantum cascade lasers with enhanced upper laser level confinement,” Physica E 7(1-2), 8–11 (2000). [CrossRef]
  12. C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade laser,” Appl. Phys. Lett. 90(5), 053505 (2007). [CrossRef]
  13. G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “high speed all-optical modulation of a standard quantum cascade laser,” Appl. Phys. Lett. 95(10), 101104 (2009). [CrossRef]
  14. T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs–InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006). [CrossRef]
  15. J. Mc Tavish, D. Indjin, and P. Harrison, “Aspects of the internal physics of InGaAs/InAlAs quantum cascade lasers,” J. Appl. Phys. 99(11), 114505 (2006). [CrossRef]
  16. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons Inc. USA, 1991), Chap. 16.
  17. Z. Liu, D. Wasserman, S. Howard, A. J. Hoffman, C. Gmachl, and ., “Room-Temperature Continuous-Wave Quantum Cascade Lasers Grown by MOCVD Without Lateral Regrowth,” IEEE Photon. Technol. Lett. 18(12), 1347–1349 (2006). [CrossRef]
  18. Carlo Sirtori and Roland Teissier, “Quantum cascade lasers: overview of basic principles of operation and state of the art” in Intersuband transitions in quantum structures, Roberto Paiella Editor (McGraw-Hill New York, 2006), 15.
  19. C. Sirtori, S. Barbieri, P. Kruck, V. Piazza, M. Beck, J. Faist, U. Oesterle, P. Collot, and J. Nagle, “Influence of DX centers on the performance of unipolar semiconductor lasers based on GaAs-AlxGa1-xAs,” IEEE Photon. Technol. Lett. 11(9), 1090–1092 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited