OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 24317–24333

Experimental and theoretical investigations of photonic crystal fiber amplifier with 260 W output

Iyad Dajani, Christopher Vergien, Craig Robin, and Clint Zeringue  »View Author Affiliations

Optics Express, Vol. 17, Issue 26, pp. 24317-24333 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (570 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a polarization-maintaining narrow-linewidth high power ytterbium-doped photonic crystal fiber amplifier with an output as high as 260 W and a slope efficiency of approximately 74%. Measurements of the beam quality yielded M2 values in the range of 1.2-1.3. The linewidth was determined at two different powers using an optical heterodyne detection technique and yielded values that were less than 10 KHz. Our maximum output power was pump limited and measurements of the reflected light indicated that we operated below the stimulated Brillouin scattering (SBS) threshold. Using a pump-probe technique, we estimated the Brillouin gain bandwidth to be approximately 68 MHz. In addition, the Brillouin gain spectrum revealed secondary peaks lying at the high-frequency side. In order to study the power limitations of our amplifier, we developed a detailed model that included a distributed noise source for the SBS process and a temperature gradient obtained via quantum defect heating. Our simulations indicated that for this particular fiber amplifier configuration an output power approaching 1 KW can be achieved. We also found that for forced air cooling the SBS threshold saturates regardless of the operating temperature of the polymer coating. Finally, we show that relatively small enhancement is obtained if a continuous transverse acoustic velocity gradient was implemented in conjunction with the thermal gradient. The latter conclusions drawn from our simulations also hold true for conventional fibers.

© 2009 OSA

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(290.5900) Scattering : Scattering, stimulated Brillouin
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Photonic Crystal Fibers

Original Manuscript: September 23, 2009
Revised Manuscript: December 6, 2009
Manuscript Accepted: December 11, 2009
Published: December 18, 2009

Iyad Dajani, Christopher Vergien, Craig Robin, and Clint Zeringue, "Experimental and theoretical investigations of photonic crystal fiber amplifier with 260 W output," Opt. Express 17, 24317-24333 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1 KW of continous-wave ouput power,” Electron. Lett. 40(8), 470–472 (2004). [CrossRef]
  2. T. M. Shay, “Theory of electronically phased coherent beam combination without a reference beam,” Opt. Express 14(25), 12188–12195 (2006). [CrossRef] [PubMed]
  3. F. J. Kontur, I. Dajani, Y. Lu, and R. J. Knize, “Frequency-doubling of a CW fiber laser using PPKTP, PPMgSLT, and PPMgLN,” Opt. Express 15(20), 12882–12889 (2007). [CrossRef] [PubMed]
  4. C. A. Denman, P. D. Hellman, G. T. Moore, J. M. Telle, J. D. Drummond, and A. L. Tuffli, “20 W CW 589 nm sodium beacon excitation source for adaptive optical telescope applications,” Opt. Mater. 26(4), 507–513 (2004). [CrossRef]
  5. E. Rochat, K. Haroud, and R. Dändliker, “High power Nd-doped fiber amplifier for coherent intersatellite links,” J. Quantum Electron. 35(10), 1419–1423 (1999). [CrossRef]
  6. D. Kracht, R. Wilhelm, M. Frede, C. Fallnich, F. Seifert, B. Willke, and K. Danzmann, “High power single- frequency laser for gravitational wave detection,” in Advanced Solid-State Photonics, Technical Digest Optical Society of America, paper WE1 (2006).
  7. J. P. Koplow, D. A. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000). [CrossRef] [PubMed]
  8. D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Connor, and M. Alam, ““ Current developments in high-power, monolithic, polarization maintaining fiber amplifiers for coherent beam combining applications,” in Fiber Lasers IV: Technology, Systems, and Applications,” Proc. SPIE 6453, 64531F (2007). [CrossRef]
  9. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007). [CrossRef]
  10. A. Wada, T. Nozawa, D. Tanaka, and R. Yamauchi, “Suppression of SBS by intentionally induced periodic residual-strain in single-mode optical fibers,” in Proc. of 17th ECOC, paper B1.1 (1991).
  11. P. D. Dragic, C. H. Liu, G. C. Papen, and A. Galvanauskas, “Optical Fiber with an Acoustic Guiding Stimulated Brillouin Scattering Suppression,” in Conference on lasers and Electro-Optics (CLEO), paper CThZ3 (2005).
  12. M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007). [CrossRef] [PubMed]
  13. M. D. Mermelstein, M. J. Andrejco, J. Fini, C. Headley, and D. J. DiGiovanni, ““11.2 dB SBS Gain Suppression in a Large Mode Area Yb-Doped Optical Fiber,” in Fiber Lasers V: Technology, Systems, and Applications,” Proc. SPIE 6873, 68730N (2008). [CrossRef]
  14. I. Dajani, C. Zeringue, T. J. Bronder, T. Shay, A. Gavrielides, and C. Robin, “A theoretical treatment of two approaches to SBS mitigation with two-tone amplification,” Opt. Express 16(18), 14233–14247 (2008). [CrossRef] [PubMed]
  15. I. Dajani, C. Zeringue, and T. Shay, “Investigation of nonlinear effects in multitone-driven narrow linewidth high-power amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 406–414 (2009). [CrossRef]
  16. C. Zeringue, I. Dajani, C. Lu, A. Lobad, and C. Vergien, “Experimental verification of two-tone amplification in single frequency fiber amplifiers,” in Nonlinear Optics: Materials, Fundamentals and Applications (NLO), paper PDPA2 (2009).
  17. http://www.crystalfibre.com/
  18. M. Hildebrandt, M. Frede, P. Kwee, B. Willke, and D. Kracht, “Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power,” Opt. Express 14(23), 11071–11076 (2006). [CrossRef] [PubMed]
  19. D. Baney, and W. Sorin, “High Resolution Optical Frequency analysis,” in Fiber Optic Test and Measurement, edited by D. Derickson (Prentice-Hall, 1998).
  20. M. Hildebrandt, S. Büsche, P. Wessels, M. Frede, and D. Kracht, “Brillouin scattering spectra in high-power single-frequency ytterbium doped fiber amplifiers,” Opt. Express 16(20), 15970–15979 (2008). [CrossRef] [PubMed]
  21. P. Dainese, P. St. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin Scattering from multi-GHZ-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006). [CrossRef]
  22. J. C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, and L. Thévenaz, “Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber,” Opt. Express 15(23), 15517–15522 (2007). [CrossRef] [PubMed]
  23. K. Furusawa, Z. Yusoff, F. Poletti, T. M. Monro, N. G. R. Broderick, and D. J. Richardson, “Brillouin characterization of holey optical fibers,” Opt. Lett. 31(17), 2541–2543 (2006). [CrossRef] [PubMed]
  24. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11(11), 2489–2494 (1972). [CrossRef] [PubMed]
  25. R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990). [CrossRef] [PubMed]
  26. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-doped fiber amplifiers: Fundamentals and Technology (Academic press 1999).
  27. G. Agrawal, Nonlinear Fiber Optics, Third Edition (Academic Press 2001).
  28. C. T. Hsu, P. Cheng, and K. W. Wong, “A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media,” J. Heat Transfer 117(2), 264–269 (1995). [CrossRef]
  29. V. I. Kovalev and R. G. Harrison, “Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers,” Opt. Lett. 31(2), 161–163 (2006). [CrossRef] [PubMed]
  30. J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, ““Fiber design for high-power lasers,” Fiber Lasers VI: Technology, Systems, and Applications,” Proc. SPIE 7195, 71950I (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited