OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 24342–24348

Multi-mode mitigation in an optofluidic chip for particle manipulation and sensing

Philip Measor, Sergei Kühn, Evan J. Lunt, Brian S. Phillips, Aaron R. Hawkins, and Holger Schmidt  »View Author Affiliations

Optics Express, Vol. 17, Issue 26, pp. 24342-24348 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (225 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new waveguide design for an optofluidic chip is presented. It mitigates multi-mode behavior in solid and liquid-core waveguides by increasing fundamental mode coupling to 82% and 95%, respectively. Additionally, we demonstrate a six-fold improvement in lateral confinement of optically guided dielectric microparticles and double the detection efficiency of fluorescent particles.

© 2009 OSA

OCIS Codes
(220.2740) Optical design and fabrication : Geometric optical design
(230.1150) Optical devices : All-optical devices
(230.7370) Optical devices : Waveguides
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: November 23, 2009
Manuscript Accepted: December 9, 2009
Published: December 18, 2009

Virtual Issues
Vol. 5, Iss. 1 Virtual Journal for Biomedical Optics

Philip Measor, Sergei Kühn, Evan J. Lunt, Brian S. Phillips, Aaron R. Hawkins, and Holger Schmidt, "Multi-mode mitigation in an optofluidic chip for particle manipulation and sensing," Opt. Express 17, 24342-24348 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442(7101), 381–386 (2006). [CrossRef] [PubMed]
  2. C. Monat, P. Domachuk, and B. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007). [CrossRef]
  3. R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguide based sensors,” Sens. Actuators B Chem. 100(1-2), 143–146 (2004). [CrossRef]
  4. H. Schmidt and A. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluidics and Nanofluidics 4(1-2), 3–16 (2008). [CrossRef] [PubMed]
  5. A. Hawkins and H. Schmidt, “Optofluidic waveguides: II. Fabrication and structures,” Microfluidics and Nanofluidics 4(1-2), 17–32 (2008). [CrossRef]
  6. D. Yin, J. P. Barber, A. R. Hawkins, and H. Schmidt, “Highly efficient fluorescence detection in picoliter volume liquid-core waveguides,” Appl. Phys. Lett. 87(21), 211111 (2005). [CrossRef]
  7. D. Yin, E. J. Lunt, M. I. Rudenko, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Planar optofluidic chip for single particle detection, manipulation, and analysis,” Lab Chip 7(9), 1171–1175 (2007). [CrossRef] [PubMed]
  8. P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, “Hollow-core waveguide characterization by optically induced particle transport,” Opt. Lett. 33(7), 672–674 (2008). [CrossRef] [PubMed]
  9. M. I. Rudenko, S. Kühn, E. J. Lunt, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip,” Biosens. Bioelectron. 24(11), 3258–3263 (2009). [CrossRef] [PubMed]
  10. S. Kühn, P. Measor, E. J. Lunt, B. S. Phillips, D. W. Deamer, A. R. Hawkins, and H. Schmidt, “Loss-based optical trap for on-chip particle analysis,” Lab Chip 9(15), 2212–2216 (2009). [CrossRef] [PubMed]
  11. A. W. Snyder, and J. D. Love, Optical Waveguide Theory (Springer, 1983).
  12. R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “Integrated optofluidic Mach-Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett. 93(1), 011106 (2008). [CrossRef]
  13. E. J. Lunt, P. Measor, B. S. Phillips, S. Kühn, H. Schmidt, and A. R. Hawkins, “Improving solid to hollow core transmission for integrated ARROW waveguides,” Opt. Express 16(25), 20981–20986 (2008). [CrossRef] [PubMed]
  14. J.-L. Archambault, R. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol. 11(3), 416–423 (1993). [CrossRef]
  15. D. Marcuse, “Radiation losses of step-tapered channel waveguides,” Appl. Opt. 19(21), 3676–3681 (1980). [CrossRef] [PubMed]
  16. R. N. Thurston, E. Kapon, and A. Shahar, “Two-dimensional control of mode size in optical channel waveguides by lateral channel tapering,” Opt. Lett. 16(5), 306–308 (1991). [CrossRef] [PubMed]
  17. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1304 KB)     
» Media 2: AVI (819 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited