OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 24349–24357

Electrical detection of plasmonic waves using an ultra-compact structure via a nanocavity

Ping Bai, Ming-Xia Gu, Xing-Chang Wei, and Er-Ping Li  »View Author Affiliations


Optics Express, Vol. 17, Issue 26, pp. 24349-24357 (2009)
http://dx.doi.org/10.1364/OE.17.024349


View Full Text Article

Enhanced HTML    Acrobat PDF (448 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel structure is proposed to electrically detect the plasmonic waves from a subwavelength plasmonic waveguide. By locating two L-shaped metallic nanorods in close proximity of each other at the end of the plasmonic waveguide, a metal-semiconductor-metal plasmonic detector is constructed. The L-shaped nanorods also form a dipole nanoantenna and a nanocavity to focus the photonic power into the active volume of the detector. The dimensions and locations of the L-shaped nanorods are studied to maximize the transmission efficiency of the photonic power from the plasmonic waveguide to the detector. Impedance matching with a sub is investigated to further improve the power transmission. Possible leads of the detector are discussed and their effects are investigated. Proposed detector has an ultra-compact and easy-to-fabricate planar structure, and a potentially THz speed, high responsivity as well as low power dissipation.

© 2009 OSA

OCIS Codes
(230.0040) Optical devices : Detectors
(230.0250) Optical devices : Optoelectronics
(230.5750) Optical devices : Resonators
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: October 26, 2009
Revised Manuscript: December 3, 2009
Manuscript Accepted: December 3, 2009
Published: December 18, 2009

Citation
Ping Bai, Ming-Xia Gu, Xing-Chang Wei, and Er-Ping Li, "Electrical detection of plasmonic waves using an ultra-compact structure via a nanocavity," Opt. Express 17, 24349-24357 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-26-24349


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]
  2. S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1671–1677 (2006). [CrossRef]
  3. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  4. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296(4), 56–62 (2007). [CrossRef] [PubMed]
  5. R. Zia, J. A. Schuller, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006). [CrossRef]
  6. S. A. Maier, “Waveguiding: The best of both worlds,” Nat. Photonics 2(8), 460–461 (2008). [CrossRef]
  7. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009). [CrossRef]
  8. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2(11), 684–687 (2008). [CrossRef]
  9. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  10. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  11. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008). [CrossRef]
  12. J. A. Dionne, H. J. Lezec, and H. A. Atwater, “Highly confined photon transport in subwavelength metallic slot waveguides,” Nano Lett. 6(9), 1928–1932 (2006). [CrossRef] [PubMed]
  13. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006). [CrossRef] [PubMed]
  14. H. S. Chu, W. B. Ewe, W. S. Koh, and E. P. Li, “Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain,” Appl. Phys. Lett. 92(10), 103103 (2008). [CrossRef]
  15. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef] [PubMed]
  16. H.-S. Chu, W. B. Ewe, E. P. Li, and R. Vahldieck, “Analysis of sub-wavelength light propagation through long double-chain nanowires with funnel feeding,” Opt. Express 15(7), 4216–4223 (2007). [CrossRef] [PubMed]
  17. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005). [CrossRef] [PubMed]
  18. I. De Vlaminck, P. Van Dorpe, L. Lagae, and G. Borghs, “Local electrical detection of single nanoparticle plasmon resonance,” Nano Lett. 7(3), 703–706 (2007). [CrossRef] [PubMed]
  19. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2(4), 226–229 (2008). [CrossRef]
  20. P. Neutens, P. V. Dorpe, I. D. Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal–insulator–metal waveguides,” Nat. Photonics 3(5), 283–286 (2009). [CrossRef]
  21. L. Vivien, J. Osmond, J. M. Fédéli, D. Marris-Morini, P. Crozat, J. F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009). [CrossRef] [PubMed]
  22. A. Aiu and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008). [CrossRef]
  23. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9(3), 1278–1282 (2009). [CrossRef] [PubMed]
  24. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-dependent optical coupling of single bowtie nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004). [CrossRef]
  25. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006). [CrossRef]
  26. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005). [CrossRef] [PubMed]
  27. M. L. Brongersma, “Plasmonics: Engineering optical nanoantennas,” Nat. Photonics 2(5), 270–272 (2008). [CrossRef]
  28. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9(10), 3387–3391 (2009). [CrossRef] [PubMed]
  29. M. X. Gu, P. Bai, and E. P. Li, “Enhancing the reception of propagating surface plasmons using a nanoantenna,” IEEE Photon. Technol. Lett. (to be published).
  30. D. Palik, Handbook of optical Constants of Solid (Academic, New York, 1985).
  31. L. Colace, G. Masini, and G. Assanto, “Ge-on-Si approaches to the detection of near-infrared light,” J. Quantum Electron. 35(12), 1843–1852 (1999). [CrossRef]
  32. http://www.cst.com/Content/Products/MWS/Overview.aspx
  33. D. M. Pozar, Microwave Engineering 3rd Ed. (John Wiley, 2004).
  34. I. Codreanu and G. D. Boreman, “Influence of dielectric substrate on the responsivity of microstrip dipole-antenna-coupled infrared microbolometers,” Appl. Opt. 41(10), 1835–1840 (2002). [CrossRef] [PubMed]
  35. U. Kreibig, and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag: Heidelberg, 1995).
  36. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009). [CrossRef] [PubMed]
  37. http://www.silvaco.com/products/TCAD.html .
  38. C. Jacoboni, F. Nava, C. Canali, and G. Ottaviani, “Electron drift velocity and diffusivity in germanium,” Phys. Rev. B 24(2), 1014–1026 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited