OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 26 — Dec. 21, 2009
  • pp: 24371–24376

Transparency induced by coupled resonances in disordered metamaterials

Wei Tan, Yong Sun, Zhi-Guo Wang, Hong Chen, and Hai-Qing Lin  »View Author Affiliations

Optics Express, Vol. 17, Issue 26, pp. 24371-24376 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (177 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a scheme to induce transparency in one-dimensional disordered multilayers which are composed of negative permittivity and negative permeability metamaterials. First, analytical expressions for transparency condition are derived exactly, providing us a picture that complete tunneling in such kind of multiple-resonance system can be achieved if exponentially growing waves can compensate exponentially decaying waves. Second, a compensating method is used to realize this idea, and both simulations and experiments are performed in the microwave regime to confirm the theoretical analysis. Last, we have a discussion on how the coupling of resonances affects the transport properties of samples.

© 2009 OSA

OCIS Codes
(260.2160) Physical optics : Energy transfer
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: October 28, 2009
Revised Manuscript: December 3, 2009
Manuscript Accepted: December 3, 2009
Published: December 18, 2009

Wei Tan, Yong Sun, Zhi-Guo Wang, Hong Chen, and Hai-Qing Lin, "Transparency induced by coupled resonances
in disordered metamaterials," Opt. Express 17, 24371-24376 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, “Light finds a way through maze,” Physics 1, 20 (2008). [CrossRef]
  2. P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109(5), 1492–1505 (1958). [CrossRef]
  3. J. B. Pendry, “Quasi-extended electron states in strongly disordered systems,” J. Phys. C Solid State Phys. 20(5), 733–742 (1987). [CrossRef]
  4. A. V. Tartakovskii, M. V. Fistul, M. E. Raikh, and I. M. Ruzin, “Hopping conductivity of metal-semiconductor-metal contacts,” Sov. Phys. Semicond. 21, 370–373 (1987).
  5. J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, “Optical necklace states in Anderson localized 1D systems,” Phys. Rev. Lett. 94(11), 113903 (2005). [CrossRef] [PubMed]
  6. K. Y. Bliokh, Y. P. Bliokh, V. Freilikher, A. Z. Genack, B. Hu, and P. Sebbah, “Localized modes in open one-dimensional dissipative random systems,” Phys. Rev. Lett. 97(24), 243904 (2006). [CrossRef] [PubMed]
  7. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  8. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  9. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006). [CrossRef] [PubMed]
  10. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]
  11. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000). [CrossRef] [PubMed]
  12. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  13. G. V. Eleftheriades, and K. G. Balmain, Negative-Refraction Metamaterials: Fundamental Principles and Applications, (John Wiley & Sons, Inc., New Jersey, 2005).
  14. C. Caloz, and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, (Wiley, New York, 2006).
  15. J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90(8), 083901 (2003). [CrossRef] [PubMed]
  16. H. Jiang, H. Chen, H. Li, Y. Zhang, J. Zi, and S. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(6), 066607 (2004). [CrossRef] [PubMed]
  17. Y. Weng, Z. G. Wang, and H. Chen, “Band structures of one-dimensional subwavelength photonic crystals containing metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(4), 046601 (2007). [CrossRef] [PubMed]
  18. A. A. Asatryan, L. C. Botten, M. A. Byrne, V. D. Freilikher, S. A. Gredeskul, I. V. Shadrivov, R. C. McPhedran, and Y. S. Kivshar, “Suppression of Anderson localization in disordered metamaterials,” Phys. Rev. Lett. 99(19), 193902 (2007). [CrossRef] [PubMed]
  19. P. Han, C. T. Chan, and Z. Q. Zhang, “Wave localization in one-dimensional random structures composed of single-negative metamaterials,” Phys. Rev. B 77(11), 115332 (2008). [CrossRef]
  20. A. Aù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency,” IEEE Trans. Antenn. Propag. 51(10), 2558–2571 (2003). [CrossRef]
  21. P. Yeh, A. Yariv, and C. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67(4), 423–438 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited