OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 3 — Feb. 2, 2009
  • pp: 1330–1339

Speckle elimination using shift-averaging in high-rate holographic projection

Lior Golan and Shy Shoham  »View Author Affiliations

Optics Express, Vol. 17, Issue 3, pp. 1330-1339 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (711 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Speckle is a major source of noise in holographic projection. Time averaging of multiple holograms may be used to reduce speckle contrast, but multiple holograms must be calculated per each frame, costing in computational power. We show that a single hologram may be used to generate a fully speckle-free reconstruction, by cyclic shifting and time averaging. We demonstrate the concept experimentally, and discuss its application for high-rate holographic projection systems.

© 2009 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(090.2870) Holography : Holographic display
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:
Coherence and Statistical Optics

Original Manuscript: December 4, 2008
Revised Manuscript: January 8, 2009
Manuscript Accepted: January 12, 2009
Published: January 22, 2009

Lior Golan and Shy Shoham, "Speckle elimination using shift-averaging in high-rate holographic projection," Opt. Express 17, 1330-1339 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72,1810-1816 (2001). [CrossRef]
  2. W. A. Crossland, I. G. Manolis, M. M. Redmond, K. L. Tan, T. D. Wilkinson, M. J. Holmes, T. R. Parker, H. H. Chu, J. Croucher, V. A. Handerek, S. T. Warr, B. Robertson, I. G. Bonas, R. Franklin, C. Stace, H. J. White, R. A. Woolley, and G. Henshall, "Holographic optical switching: the "ROSES" demonstrator," J. Lightwave Technol. 18, 1845-1854 (2000). [CrossRef]
  3. E. Buckley, "Holographic Laser Projection Technology," in SID 08 Digest, (Society for Information Display, 2008), 1074-1079.
  4. N. J. Jenness, K. D. Wulff, M. S. Johannes, M. J. Padgett, D. G. Cole, and R. L. Clark, "Three-dimensional parallel holographic micropatterning using a spatial light modulator," Opt. Express 16, 15942-15948 (2008). [CrossRef] [PubMed]
  5. C. Lutz, T. S. Otis, V. DeSars, S. Charpak, D. A. DiGregorio, and V. Emiliani, "Holographic photolysis of caged neurotransmitters," Nat. Meth. 5, 821-827 (2008). [CrossRef]
  6. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Robert & Company, 2005).
  7. L. K. Cotter, T. J. Drabik, R. J. Dillon, and M. A. Handschy, "Ferroelectric-liquid-crystal/silicon-integrated-circuit spatial light modulator," Opt. Lett. 15, 291-293 (1990). [CrossRef] [PubMed]
  8. R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik (Jena) 35, 237-246 (1972).
  9. H. Aagedal, J. Turunen, and M. Schmid, "Paraxial Beam Splitting and Shaping," in Diffractive Optics for Industrial and Commercial Applications, J. Turunen and F. Wyrowski, eds., (Wiley-VCH 1997).
  10. S. Shoham, D. H. O'Connor, D. V. Sarkisov, and S. S.-H. Wang, "Rapid neurotransmitter uncaging in spatially defined patterns," Nat. Methods 2, 837-843 (2005). [CrossRef]
  11. F. Wyrowski and O. Bryngdahl, "Iterative Fourier-transform algorithm applied to computer holography," J. Opt. Soc. Am. A 5, 1058-1065 (1988). [CrossRef]
  12. H. Aagedal, M. Schmid, T. Beth, S. Teiwes, and F. Wyrowski, "Theory of speckles in diffractive optics and its application to beam shaping," J. Mod. Opt. 43, 1409 - 1421 (1996). [CrossRef]
  13. J. Amako, H. Miura, and T. Sonehara, "Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator," Appl. Opt. 34, 3165-3171 (1995). [CrossRef] [PubMed]
  14. J. W. Goodman, "Some fundamental properties of speckle," J. Opt. Soc. Am. 66, 1145-1150 (1976). [CrossRef]
  15. V. Arrizón and M. Testorf, "Efficiency limit of spatially quantized Fourier array illuminators," Opt. Lett. 22, 197-199 (1997). [CrossRef] [PubMed]
  16. R. N. Bracewell, The Fourier Transform and Its Applications, 2nd ed., (McGraw-Hill, 1986).
  17. J. I. Trisnadi, "Hadamard speckle contrast reduction," Opt. Lett. 29, 11-13 (2004). [CrossRef] [PubMed]
  18. R. Di Leonardo, F. Ianni, and G. Ruocco, "Computer generation of optimal holograms for optical trap arrays," Opt. Express 15, 1913-1922 (2007). [CrossRef] [PubMed]
  19. J. E. Curtis, C. H. Schmitz, and J. P. Spatz, "Symmetry dependence of holograms for optical trapping," Opt. Lett. 30, 2086-2088 (2005). [CrossRef] [PubMed]
  20. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, "Real-time digital holographic microscopy using the graphic processing unit," Opt. Express 16, 11776-11781 (2008). [CrossRef] [PubMed]
  21. Y. Abe, N. Masuda, H. Wakabayashi, Y. Kazo, T. Ito, S.-i. Satake, T. Kunugi, and K. Sato, "Special purpose computer system for flow visualization using holography technology," Opt. Express 16, 7686-7692 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited