OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 3 — Feb. 2, 2009
  • pp: 1346–1351

Monopole woodpile photonic crystal modes for light-matter interaction and optical trapping

Lingling Tang and Tomoyuki Yoshie  »View Author Affiliations


Optics Express, Vol. 17, Issue 3, pp. 1346-1351 (2009)
http://dx.doi.org/10.1364/OE.17.001346


View Full Text Article

Enhanced HTML    Acrobat PDF (644 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two types of ultra-high-Q monopole modes are designed in a woodpile three-dimensional photonic crystal. The unit cell size modulation is applied to a woodpile photonic crystal waveguide in a complete photonic band gap. A monopole mode overlapping with a dielectric rod is designed for solid-state sub-wavelength-scale light-matter interaction devices such as nanolasers, cavity-QED and optical switches, whereas another type of monopole mode overlapping with vacuum is designed for optical trapping experiments. For the mode overlapping with vacuum, the mode volume is as small as 0.4 cubic half-wavelengths.

© 2009 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals
(130.3990) Integrated optics : Micro-optical devices

ToC Category:
Photonic Crystals

History
Original Manuscript: December 15, 2008
Revised Manuscript: January 16, 2009
Manuscript Accepted: January 19, 2009
Published: January 22, 2009

Citation
Lingling Tang and Tomoyuki Yoshie, "Monopole woodpile photonic crystal modes for light-matter interaction and optical trapping," Opt. Express 17, 1346-1351 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-3-1346


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, "Novel applications of photonic ban gap materials: Low-loss bends and high Q cavities," J. Appl. Phys. 75, 4753-4755 (1994). [CrossRef]
  4. T. Yoshie, J. Vučković, A. Scherer, H. Chen, and D. G. Deppe, "High quality two-dimensional photonic crystal slab cavities," Appl. Phys. Lett. 79, 4289-4291 (2001) [CrossRef]
  5. K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002). [PubMed]
  6. Y. Tanaka, T. Asano, and S. Noda, "Design of photonic crystal nanocaivty with Q-factor of ~109," J. Lightwave Technol. 26, 1532-1539 (2008). [CrossRef]
  7. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006). [CrossRef]
  8. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensonal photonic crystal band-gap defect mode laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  9. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004). [CrossRef] [PubMed]
  10. D. Englund, I. Fushman, and J. Vučković, "General recipe for designing photonic crystal cavities," Opt. Express 13, 5961-5975 (2005). [CrossRef] [PubMed]
  11. Z. Zhang and M. Qiu, "Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs," Opt. Express 12, 3988-3995 (2004). [CrossRef] [PubMed]
  12. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, "Photonic band gaps in three dimensions: new layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994). [CrossRef]
  13. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional photonic bandgap crystals at near-infrared wavelengths," Science 289, 604-606 (2000). [CrossRef] [PubMed]
  14. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, "A three-dimensional optical photonic crystal with designed point defect," Nature 429, 538-542 (2004). [CrossRef] [PubMed]
  15. K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, "Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity," Nat. Photonics 2, 688-692 (2008) [CrossRef]
  16. L. Tang, and T. Yoshie, "Ultra-high-Q three-dimensional photonic crystal nano-resonators," Opt. Express 15, 17254-17263 (2007). [CrossRef] [PubMed]
  17. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S.G. Johnson, and G. Burr, "Improving accuracy by subpixel smoothing in FDTD," Opt. Lett. 31, 2972-2974 (2006). [CrossRef] [PubMed]
  18. L. Novotony and B. Hecht, "Forces in confined fields," in Principles of Nano-Optics (Cambridge Univ. Press, 2006), pp. 419-445.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited