OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 3 — Feb. 2, 2009
  • pp: 1404–1413

The role of input chirp on phase shifters based on slow and fast light effects in semiconductor optical amplifiers

Weiqi Xue, Yaohui Chen, Filip Öhman, and Jesper Mørk  »View Author Affiliations


Optics Express, Vol. 17, Issue 3, pp. 1404-1413 (2009)
http://dx.doi.org/10.1364/OE.17.001404


View Full Text Article

Enhanced HTML    Acrobat PDF (291 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally investigate the initial chirp dependence of slow and fast light effects in a semiconductor optical amplifier followed by an optical filter. It is shown that the enhancement of the phase shift due to optical filtering strongly depends on the chirp of the input optical signal. We demonstrate ~120° phase delay as well as ~170° phase advance at a microwave frequency of 19 GHz for different optimum values of the input chirp. The experimental results are shown to be in good agreement with numerical results based on a four-wave mixing model. Finally, a simple physical explanation based on an analytical perturbative approach is presented.

© 2009 Optical Society of America

OCIS Codes
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(130.5990) Integrated optics : Semiconductors
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Optical Devices

History
Original Manuscript: September 24, 2008
Revised Manuscript: January 15, 2009
Manuscript Accepted: January 16, 2009
Published: January 22, 2009

Citation
Weiqi Xue, Yaohui Chen, Filip Öhman, and Jesper Mørk, "The role of input chirp on phase shifters based on slow and fast light effects in semiconductor optical amplifiers," Opt. Express 17, 1404-1413 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-3-1404


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999). [CrossRef]
  2. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a room-temperature solid," Science 301, 200-202 (2003). [CrossRef] [PubMed]
  3. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. -L. Wang, S. -W. Chang and S. -L. Chuang, "Slow light in semiconductor quantum wells," Opt. Lett. 29, 2291-2293 (2004). [CrossRef] [PubMed]
  4. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  5. N. V. Jespersen, and P. R. Herczfeld, "Optical techniques for reconfiguring microwave phased arrays," IEEE Trans. Antennas Propag. 38, 1054-1058 (1990). [CrossRef]
  6. J. Capmany, B. Ortega, D. Pastor, and S. Sales, "Discrete-time optical processing of microwave signals," J. Lightwave Technol. 25, 702-723 (2005). [CrossRef]
  7. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, "Slow light in a semiconductor waveguide at gigahertz frequencies," Opt. Express 13, 8136-8145 (2005). [CrossRef] [PubMed]
  8. H. Su, and S. L. Chuang, "Room-temperature slow light with semiconductor quantum-dot devices," Opt. Lett. 31, 271-273 (2006). [CrossRef] [PubMed]
  9. C. J. Chang-Hasnain, and S. L. Chuang, "Slow and fast light in semiconductor quantum-well and quantum-dot devices," J. Lightwave Technol. 24, 4642-4654 (2006). [CrossRef]
  10. P. K. Kondratko and S. L. Chuang, "Slow-to-fast light using absorption to gain switching in quantum-well semiconductor optical amplifier," Opt. Express 15, 9963-9969 (2007). [CrossRef] [PubMed]
  11. F. Öhman, K. Yvind, and J. Mørk, "Voltage-controlled slow light in an integrated semiconductor structure with net gain," Opt. Express 14, 9955-9962 (2006). [CrossRef] [PubMed]
  12. F. G. Sedgwick, B. Pesala, A. V. Uskov, and C. J. Chang-Hasnain, "Chirp-enhanced fast light in semiconductor optical amplifiers," Opt. Express 15, 17631-17638 (2007). [CrossRef] [PubMed]
  13. J. Mørk, F. Öhman, M. van der Poel, Y. Chen, P. Lunnemann, and K. Yvind, "Slow and fast light: controlling the speed of light using semiconductor waveguides," Laser Photonics Rev. 2, (2008) (to be published).
  14. F. Öhman, K. Yvind, and J. Mørk, "Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics," IEEE Photon Technol. Lett. 19,1145-1147 (2007). [CrossRef]
  15. W. Xue, Y. Chen, F. Öhman, S. Sales, and J. Mørk, "Enhancing light slow-down in semiconductor optical amplifiers by optical filtering," Opt. Lett. 33, 1084-1086 (2008). [CrossRef] [PubMed]
  16. H. Su, P. K. Kondratko, and S. L. Chuang, "Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers," Opt. Express 14, 4800-4807 (2006). [CrossRef] [PubMed]
  17. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett.  90, 113903-1-4 (2003). [CrossRef]
  18. F. Koyama and K. Iga, "Frequency chirping in external modulators," J. Lightwave Technol. 6, 87-93 (1988). [CrossRef]
  19. G. H. Smith, D. Novak, and Z. Ahmed, "Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators," IEEE Trans. Microwave Theory Tech. 45, 1410-1415 (1997). [CrossRef]
  20. A. V. Uskov, and C. J. Chang-Hasnain, "Slow and superluminal light in semiconductor optical amplifiers," Electron. Lett. 41, 55-56 (2005). [CrossRef]
  21. W. Xue, S. Sales, J. Mørk, and J. Capmany, "Widely tunable microwave photonic notch filter based on slow and fast light effects," IEEE Photon Technol. Lett., DOI: 10.1109/LPT.2008.2009468 (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited