OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 3 — Feb. 2, 2009
  • pp: 1447–1453

Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity

Joel Villatoro, Mark P. Kreuzer, Rajan Jha, Vladimir P. Minkovich, Vittoria Finazzi, Gonçal Badenes, and Valerio Pruneri  »View Author Affiliations


Optics Express, Vol. 17, Issue 3, pp. 1447-1453 (2009)
http://dx.doi.org/10.1364/OE.17.001447


View Full Text Article

Enhanced HTML    Acrobat PDF (574 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report an in-reflection photonic crystal fiber (PCF) interferometer which exhibits high sensitivity to different volatile organic compounds (VOCs), without the need of any permeable material. The interferometer is compact, robust, and consists of a stub of PCF spliced to standard optical fiber. In the splice the voids of the PCF are fully collapsed, thus allowing the excitation and recombination of two core modes. The device reflection spectrum exhibits sinusoidal interference pattern which shifts differently when the voids of the PCF are infiltrated with VOC molecules. The volume of voids responsible for the shift is less than 600 picoliters whereas the detectable levels are in the nanomole range.

© 2009 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(280.1545) Remote sensing and sensors : Chemical analysis
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Photonic Crystal Fibers

History
Original Manuscript: December 18, 2008
Revised Manuscript: January 20, 2009
Manuscript Accepted: January 20, 2009
Published: January 23, 2009

Citation
Joel Villatoro, Mark P. Kreuzer, Rajan Jha, Vladimir P. Minkovich, Vittoria Finazzi, Gonçal Badenes, and Valerio Pruneri, "Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity," Opt. Express 17, 1447-1453 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-3-1447


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express 12,4080-4087 (2004). [CrossRef] [PubMed]
  2. J. Henningsen, J. Hald, and J. C. Peterson, "Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers," Opt. Express 13, 10475-10482 (2005). [CrossRef] [PubMed]
  3. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. St. J. Russell, "Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres," Nature 434, 488-491 (2005). [CrossRef] [PubMed]
  4. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O.L. Weaver, K. L. Corwin, "Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber," Opt. Lett. 31, 2489-2491 (2006). [CrossRef] [PubMed]
  5. L.W. Kornaszewski, N. Gayraud, J.M. Stone, W.N. MacPherson, A.K. George, J.C. Knight, D.P. Hand, D.T. Reid, "Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator," Opt. Express 15, 11219-11224 (2007). [CrossRef] [PubMed]
  6. A. M. Cubillas, M. Silva-Lopez, J. M. Lazaro, O. M. Conde, M. N. Petrovich, and J. M. Lopez-Higuera, "Methane detection at 1670-nm band using a hollow-core photonic bandgap fiber and a multiline algorithm," Opt. Express 15, 17570-17576 (2007). [CrossRef] [PubMed]
  7. S. O. Konorov, A. Zheltikov, and M. Scalora, "Photonic-crystal fiber as a multifunctional optical sensor and sample collector," Opt. Express 13,3454-3459 (2005). [CrossRef] [PubMed]
  8. C. M. B. Cordeiro, M. A. R. Franco, G. Chesini, E. C. S. Barretto, R. Lwin, C. H. Brito Cruz, and M. C. J. Large, "Microstructured-core optical fibre for evanescent sensing applications," Opt. Express 14,13056-13066 (2006). [CrossRef] [PubMed]
  9. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, "Suspended-core holey fiber for evanescent-field sensing,"Opt. Eng. 46, 010503 (2007). [CrossRef]
  10. Y. Sun, X. Yu, N. T. Nguyen, P. Shum, and Y. C. Kwok, "Long path-length axial absorption detection in photonic crystal fiber," Anal. Chem. 80, 4220-4224 (2008). [CrossRef] [PubMed]
  11. T. G. Euser, J. S. Y. Chen, N. J. Farrer, M. Scharrer, P. J. Sadler, and P. St. J. Russell, "Quantitative broadband chemical sensing in air-suspended solid-core fibers" J. Appl. Phys. 103, 103108 (2008). [CrossRef]
  12. C. M. B. Cordeiro, E. M. dos Santos, C. H. Brito Cruz, C. J. de Matos, and D. S. Ferreiira, "Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications," Opt. Express 14, 8403-8412 (2006). [CrossRef] [PubMed]
  13. F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, "Opening up optical fibres," Opt. Express 15, 11843-11848 (2007). [CrossRef] [PubMed]
  14. V. P. Minkovich, A.V. Kiryanov, A.B. Sotsky, and L.I. Sotskaya, "Large-mode-area holey fibers with a few air channels in cladding: modeling and experimental investigation of the modal properties," J. Opt. Soc. Am. B 21, 1161-1169 (2004). [CrossRef]
  15. J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, "Simple all-microstructured-optical-fiber interferometer built via fusion splicing," Opt. Express 15, 1491-1496 (2007). [CrossRef] [PubMed]
  16. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, "Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing," Appl. Phys. Lett. 91, 091109 (2007). [CrossRef]
  17. D. Káčik, I. Turek, I. Martinček, J. Canning, N. Issa, and K. Lyytikäinen, "Intermodal interference in a photonic crystal fibre," Opt. Express 12, 3465-3470 (2004). [CrossRef] [PubMed]
  18. Y. Sun and X. Fan, "Analysis of ring resonators for chemical vapor sensor development," Opt. Express 16, 10254-10268 (2008). [CrossRef] [PubMed]
  19. C. Elosua, I. R. Matias, C. Bariain, and F. J. Arregui, "Volatile organic compound optical fiber sensors: A review," Sensors 6, 1440-1465 (2006). [CrossRef]
  20. T. L. Lowder, J. D. Gordon, S. M. Schultz, and R. H. Selfridge, "Volatile organic compound sensing using a surface-relief D-shaped fiber Bragg grating and a polydimethylsiloxane layer," Opt. Lett. 32, 2523-2525 (2007). [CrossRef] [PubMed]
  21. Y. Sun, S. I. Shopova, G. Frye-Mason, and X. Fan, "Rapid chemical-vapor sensing using optofluidic ring resonators," Opt. Lett. 33, 788-790 (2008). [CrossRef] [PubMed]
  22. J. Zhang, X. Tang, J. Dong, T. Wei, and H. Xiao, "Zeolite thin film-coated long period fiber grating sensor for measuring trace chemical," Opt. Express 16, 8317-8323 (2008). [CrossRef] [PubMed]
  23. D. Monzón-Hernández, V. P. Minkovich, J. Villatoro, M. P. Kreuzer, and G. Badenes, "Photonic crystal fiber microtaper supporting two selective higher-order modes with high sensitivity to gas molecules," Appl. Phys. Lett. 93, 081106 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited