OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 3 — Feb. 2, 2009
  • pp: 1454–1465

Method for effectively utilizing tunable one-pump fiber parametric wavelength converters as an enabling device for WDM routers

Sheng Cui, Deming Liu, Ying Wang, and Feng Tu  »View Author Affiliations


Optics Express, Vol. 17, Issue 3, pp. 1454-1465 (2009)
http://dx.doi.org/10.1364/OE.17.001454


View Full Text Article

Enhanced HTML    Acrobat PDF (320 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper a method is proposed to maximize the bandwidth of the WDM router based on one-pump fiber parametric wavelength converters. It is proved that for such converters there exists an optimum signal (idler) frequency at which the output (input) tuning range can be maximized. Analytical expressions of the optimum frequency and the maximal tuning range are deduced. Then a two-stage bidirectional wavelength conversion method is proposed. With this method the bandwidth of the WDM router based on such a converter can be significantly improved compared to the one-stage ones by 252% if ordinary highly nonlinear fibers are used or 390% if fibers with optimal fourth order dispersion are used.

© 2009 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: October 22, 2008
Revised Manuscript: December 4, 2008
Manuscript Accepted: January 12, 2009
Published: January 26, 2009

Citation
Sheng Cui, Deming Liu, Ying Wang, and Feng Tu, "Method for effectively utilizing tunable one-pump fiber parametric wavelength converters as an enabling device for WDM routers," Opt. Express 17, 1454-1465 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-3-1454


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. J. Blumenthal, "Photonic Packet and All-Optical Label Switching Technologies and Techniques," in Proc. OFC 2002, paper WO3, Anaheim, USA (2002).
  2. M. Westlund, H. Hansryd, P. A. Andrekson, and S. N. Knudsen, "Transparent wavelength conversion in fibre with 24nm pump tuning range," Electron. Lett. 38, 85-86 (2002). [CrossRef]
  3. A. Zhang and M. S. Demokan, "Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber," Opt. Lett. 30,2375-2376 (2005). [CrossRef] [PubMed]
  4. K. K. Chow, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, "Four-wave mixing based widely tunable wavelength conversion using 1-m dispersionshifted bismuth-oxide photonic crystal fiber," Optics Express 15, 15418-15423 (2007). [CrossRef] [PubMed]
  5. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, T. Tanemura, and K. Kikuchi, "Wavelength conversion of 40-Gbit/s NRZ signal using four-wave mixing in 40-cm-long bismuth oxide based highly-nonlinear optical fiber," in Proc. OFC 2005, paper PDP23, Anaheim, USA (2005).
  6. P. A. Andersen, T. Tokle, Y. Geng, C. Peucheret, and P. Jeppesen, "Wavelength Conversion of a 40-Gb/s RZ-DPSK Signal Using Four-Wave Mixing in a Dispersion-Flattened Highly Nonlinear Photonic Crystal Fiber," IEEE Photonics Tech. Lett. 17, 1908-1910 (2005). [CrossRef]
  7. K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, "Polarization-Insensitive Widely Tunable Wavelength Converter Based on Four-Wave Mixing in a Dispersion-Flattened Nonlinear Photonic Crystal Fiber," IEEE Photonics Tech. Lett. 17, 624-626 (2005). [CrossRef]
  8. R. W. McKerracher, J. L. Blows and C. M de Sterke, "Wavelength conversion bandwidth in fiber based optical parametric amplifiers," Opt. Express 11, 1002-1007 (2003). [CrossRef] [PubMed]
  9. R. W. McKerracher, J. L. Blows, and C. M de Sterke, "Systematic analysis of wavelength conversion in a fiber optical parametric device with a single, tunable pump," Opt. Express 12, 2810-2815 (2004). [CrossRef] [PubMed]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001), Chap. 10.
  11. M. E. Marhic, N. Kagi, T. K. Chiang, and L. G. Kazovsky, "Broadband fiber optical parametric amplifiers," Opt. Lett. 21, 573-575 (1996). [CrossRef] [PubMed]
  12. M. Yu and C. J. McKinstrie, "Modulational instabilities in dispersion-flattened fibers," Physical Review E,  52, 1072-1080 (1995). [CrossRef]
  13. T. Yamamoto and M. Nakazawa, "Highly efficient four-wave mixing in an optical fiber with intensity dependent phase matching," IEEE Photonics Tech. Lett. 9, 327-329 (1997). [CrossRef]
  14. G. Kalogerakis and M. E. Marhic, "Methods for full utilization of the bandwidth of fiber optical parametric amplifiers and wavelength converters," J. Lightwave Tech. 24, 3683-3691 (2006). [CrossRef]
  15. M. Hirano, T. Nakanishi, T. Okuno, and Masashi Onishi, "Broadband wavelength conversion over 193-nm by HNL-DSF improving higher-order dispersion performance," in Proc. of ECOC 2005, Glasgow, Scotland, paper TH4.4.4 (2005)
  16. J. Hiroishi, N. Kumano, K. Mukasa, R. Sugizaki, R. Miyabe, S. Matsushita, H. Tobioka, S. Namiki, and T. Yagi, "Dispersion slope controlled HNL-DSF with high γ of 25 W-1km-1 and band conversion experiment using this fiber," in Proc. of ECOC 2002, Copenhagen, Denmark, paper PD1.5 (2002).
  17. M. R. E. Lamont, B. T. Kuhlmey, and C. M. D. Sterke, "Multi-order dispersion engineering for optimal four-wave mixing," Opt. Express 16, 7551-7563 (2008). [CrossRef] [PubMed]
  18. M. D. Pelusi, F. Luan, E. Magi, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, "High bit rate all-optical signal processing in a fiber photonic wire," Opt. Express 16, 11506-11512 (2008). [CrossRef] [PubMed]
  19. Dong-II Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, "Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires," Opt. Lett. 33, 660-662 (2008). [CrossRef] [PubMed]
  20. M. Karlsson, "Four-wave mixing in fibers with randomly varying zero-dispersion wavelength," J. Opt. Soc. Am. B,  15, 2269-2275(1998) [CrossRef]
  21. M. Farahmand and M. de Sterke, "Parametric amplification in presence of dispersion fluctuations," Opt. Express 12, 136-142 (2003) [CrossRef]
  22. K. Inoue, "Arrangement of fiber pieces for a wide wavelength conversion range by fiber four-wave mixing," Opt. Lett. 19,1189-1191 (1994). [CrossRef] [PubMed]
  23. M. E. Marhic, F. S. Yang, Min-Chen Ho and L. G. kazovsky, "High-nonlinearity fiber optical parametric amplifier with periodic dispersion compensation," J. Lightwave Tech. 17, 210-215 (1999). [CrossRef]
  24. J. Hansryd and P. A. Andrekson, "Broad-Band Continuous-Wave-Pumped Fiber Optical Parametric Amplifier with 49-dB Gain and Wavelength-Conversion Efficiency," IEEE Photon. Tech. Lett. 13,194-196 (2001). [CrossRef]
  25. T. Yang, C. Shu and C. Lin, "Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber," Optics Express 13, 5409-5415 (2005). [CrossRef] [PubMed]
  26. F. Yaman, Q. Lin, and G. P. Agrawal, "A novel design for polarization-independent single-pump fiber-optic parametric amplifier," IEEE Photonics Tech. Lett. 18, 2335-2337 (2006). [CrossRef]
  27. Z. Wang, N. Deng, C. Lin, and C. K. Chan, "Polarization-insensitive widely tunable wavelength conversion based on four-Wave mixing using dispersion-flattened high-nonlinearity photonic crystal fiber with residual birefringence," in Proc. of ECOC 2006, Cannes, France, Paper We3.P.18 (2006).
  28. A. S. Lenihan and G. M. Carter, "Polarization-insensitive wavelength conversion at 40 Gb/s using birefringent nonlinear fiber," in Proc. Of CLEO 2007, Baltimore, USA, paper CThAA2 (2007)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited