OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 3 — Feb. 2, 2009
  • pp: 1508–1517

A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings

Ye Zhou, Vadim Karagodsky, Bala Pesala, Forrest G. Sedgwick, and Connie J. Chang-Hasnain  »View Author Affiliations


Optics Express, Vol. 17, Issue 3, pp. 1508-1517 (2009)
http://dx.doi.org/10.1364/OE.17.001508


View Full Text Article

Enhanced HTML    Acrobat PDF (805 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel ultra-low loss single-mode hollow-core waveguide using subwavelength high-contrast grating (HCG). We analyzed and simulated the propagation loss of the waveguide and show it can be as low as 0.006dB/m, three orders of magnitude lower than the lowest loss of the state-of-art chip-scale hollow waveguides. This novel HCG hollow-core waveguide design will serve as a basic building block in many chip-scale integrated photonic circuits enabling system-level applications including optical interconnects, optical delay lines, and optical sensors.

© 2009 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.7370) Optical devices : Waveguides

ToC Category:
Diffraction and Gratings

History
Original Manuscript: November 7, 2008
Revised Manuscript: December 21, 2008
Manuscript Accepted: December 30, 2008
Published: January 26, 2009

Citation
Ye Zhou, Vadim Karagodsky, Bala Pesala, Forrest G. Sedgwick, and Connie J. Chang-Hasnain, "A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings," Opt. Express 17, 1508-1517 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-3-1508


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Ou "Different index contrast silica-on-silicon waveguides by PECVD," Electron. Lett. 2, 212-213 (2003) [CrossRef]
  2. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Material Properties (Springer, 2001)
  3. J. N. McMullin, R. Narendra, and C. R. James, "Hollow metallic waveguides in silicon V-grooves," IEEE Photon. Technol. Lett. 5, 1080-1082 (1993). [CrossRef]
  4. Y. Sakurai and F. Koyama, "Control of group delay and chromatic dispersion in tunable hollow waveguide with highly reflective mirrors," Jpn. J. Appl. Phys. 43, 1091-1093 (2004). [CrossRef]
  5. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244 (2005). [CrossRef] [PubMed]
  6. C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, "Ultrabroadband mirror using low-index cladded subwavelength grating," IEEE Photon. Technol. Lett. 16, 518-520 (2004). [CrossRef]
  7. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A surface-emitting laser incorporating a high-index-contrast subwavelength grating," Nature Photon. 1, 119-122 (2007). [CrossRef]
  8. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, "A nanoelectromechanical tunable laser," Nature Photon. 2, 180-184 (2008). [CrossRef]
  9. Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, "Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning," Opt. Express 16, 14221-14226 (2008). [CrossRef] [PubMed]
  10. Y. Zhou, M. Moewe, J. Kern, M. C. Y. Huang, and C. J. Chang-Hasnain, "Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating," Opt. Express 16, 17282-17287 (2008). [CrossRef] [PubMed]
  11. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, (Princeton University Press, 1995).
  12. V. Karagodsky, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, C.A. 94720, Y. Zhou, M.C.Y. Huang, and C. J. Chang-Hasnain are preparing a manuscript to be called "full-wave analysis and design rules for high-contrast gratings."
  13. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. 71, 811-818 (1981). [CrossRef]
  14. Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, "Large fabrication tolerance for VCSELs using high-contrast grating," IEEE Photon. Technol. Lett. 20, 434-436 (2008). [CrossRef]
  15. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari "Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength", Appl. Phys. Lett. 80, 416-418, (2002). [CrossRef]
  16. K. Jackson, S. Newton, B. Moslehi, M. Tur, C. Cutler, J. Goodman, H. J. Shaw, "Optical fiber delay-line signal processing," IEEE Trans. Microwave Theory Tech. 33, 193-204, (1985). [CrossRef]
  17. E. A. J. Marcatili, "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell Syst. Tech. J. 48, 2071-2102 (1969).
  18. B. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mat. 4, 207-210 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited