OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 3 — Feb. 2, 2009
  • pp: 1557–1570

mhFLIM: Resolution of heterogeneous fluorescence decays in widefield lifetime microscopy

S. Schlachter, A.D. Elder, A. Esposito, G.S. Kaminski, J.H. Frank, L.K. van Geest, and C.F. Kaminski  »View Author Affiliations

Optics Express, Vol. 17, Issue 3, pp. 1557-1570 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1030 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate way of measuring fluorescence lifetimes in widefield microscopy. However, the resolution of multiple exponential fluorescence decays has remained beyond the reach of most practical FD-FLIM systems. In this paper we describe the implementation of FD-FLIM using a 40MHz pulse train derived from a supercontinuum source for excitation. The technique, which we term multi-harmonic FLIM (mhFLIM), makes it possible to accurately resolve biexponential decays of fluorophores without any a priori information. The system’s performance is demonstrated using a mixture of spectrally similar dyes of known composition and also on a multiply-labeled biological sample. The results are compared to those obtained from time correlated single photon counting (TCSPC) microscopy and a good level of agreement is achieved. We also demonstrate the first practical application of an algorithm derived by G. Weber [1] for analysing mhFLIM data. Because it does not require nonlinear minimisation, it offers potential for realtime analysis during acquisition.

© 2009 Optical Society of America

OCIS Codes
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:

Original Manuscript: December 11, 2008
Revised Manuscript: January 21, 2009
Manuscript Accepted: January 21, 2009
Published: January 26, 2009

Virtual Issues
Vol. 4, Iss. 4 Virtual Journal for Biomedical Optics

S. Schlachter, A. D. Elder, A. Esposito, G. S. Kaminski, J. H. Frank, L. K. van Geest, and C. F. Kaminski, "mhFLIM: Resolution of heterogeneous fluorescence decays in widefield lifetime microscopy," Opt. Express 17, 1557-1570 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Weber, "Resolution of the fluorescence lifetimes in a heterogeneous system by phase and modulation measurements," J. Phys. Chem. 85, 949-953 (1981). [CrossRef]
  2. S. M. Matthews, A. D. Elder, K. Yunus, C. F. Kaminski, C. M. Brennan, and A. C. Fisher, "Quantitative kinetic analysis in a microfluidic device using frequency-domain fluorescence lifetime imaging," Anal. Chem. 79, 4101-4109 (2007). [CrossRef] [PubMed]
  3. H. J. Lin, P. Herman, and J. R. Lakowicz, "Fluorescence lifetime-resolved pH imaging of living cells," Cytometry Part A 52A, 77-89 (2003). [CrossRef]
  4. X. W. Dai, Z. L. Yue, M. E. Eccleston, J. Swartling, N. K. H. Slater, and C. F. Kaminski, "Fluorescence intensity and lifetime imaging of free and micellar-encapsulated doxorubicin in living cells," Nanomedicine: Nanotech. Biology Med. 4, 49-56 (2008). [CrossRef]
  5. X. W. Dai, M. E. Eccleston, Z. L. Yue, N. K. H. Slater, and C. F. Kaminski, "A spectroscopic study of the self-association and inter-molecular aggregation behaviour of pH-responsive poly(L-lysine iso-phthalamide)," Polymer 47, 2689-2698 (2006). [CrossRef]
  6. A. Esposito, T. Tiffert, J. M. A. Mauritz, S. Schlachter, L. H. Bannister, C. F. Kaminski, and V. L. Lew, "FRET Imaging of Hemoglobin Concentration in Plasmodium falciparum-Infected Red Cells," PLoS ONE 3, e3780 (2008). [CrossRef] [PubMed]
  7. M. Elangovan, R. N. Day, and A. Periasamy, "Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a living cell," J. Microscopy 205, 3-14 (2002). [CrossRef]
  8. P. J. Verveer, A. Squire, and P. I. H. Bastiaens, "Global Analysis of fluorescence lifetime imaging microscopy data," Biophys. J. 78, 2127-2137 (2000). [CrossRef] [PubMed]
  9. W. Becker, A. Bergmann, M. A. Hink, K. Konig, K. Benndorf, and C. Biskup, "Fluorescence lifetime imaging by time-correlated single photon counting," Micro. Res. Tech. 63, 58-66 (2004). [CrossRef]
  10. E. B. van Munster and T. W. J. Gadella, "Fluorescence Lifetime Imaging Microscopy (FLIM)," Adv. Biochem. Engin. / Biotechnology 95, 143-175 (2005).
  11. T. W. J. Gadella, T. M. Jovin, and R. M. Clegg, "Fluorescence lifetime imaging microscopy (FLIM): Spatial resolution of microstructures on the nanosecond time scale," Biophys. Chem. 48, 221-239 (1993). [CrossRef]
  12. A. Esposito, H. Gerritsen, and F. Wouters, "Fluorescence lifetime heterogeneity in the frequency domain by lifetime moments analysis," Biophys. J. 89, 4286-4299 (2005). [CrossRef] [PubMed]
  13. Q. S. Hanley and A. H. A. Clayton, "AB-plot assisted determination of fluorophore mixtures in a fluorescence lifetime microscope using spectra or quenchers," J. Microscopy 218, 62-67 (2005). [CrossRef]
  14. E. Gratton, D. M. Jameson, and R. D. Hall, "Multifrequency phase and modulation fluorometry," Ann. Rev.Biophys. Bioengin. 13, 105-124 (1984). [CrossRef]
  15. A. Squire, P. J. Verveer, and P. I. H. Bastiaens, "Multiple frequency fluorescence lifetime imaging microscopy," J. Microscopy 197, 136-149 (2000). [CrossRef]
  16. A. D. Elder, S. C. Schlachter, and C. F. Kaminski, "Theoretical investigation of the photon efficiency in frequency-domain FLIM," J. Opt. Soc. Am. A 25, 452-462 (2008). [CrossRef]
  17. A. Esposito, H. C. Gerritsen, and F. S. Wouters, "Optimizing frequency-domain fluorescence lifetime sensing for high-throughput applications: photon economy and acquisition speed," J. Opt. Soc. Am. A 24, 3261-3273 (2007). [CrossRef]
  18. J. Philip and K. Carlsson, "Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging," J. Opt. Soc. Am. A 20, 368-379 (2003). [CrossRef]
  19. A. D. Elder, J. H. Frank, J. Swartling, X. Dai, and C. F. Kaminski, "Calibration of a wide-field frequency-domain fluorescence lifetime microscopy system using light emitting diodes as light sources," J. Microscopy 224, 166-180 (2006). [CrossRef]
  20. J. R. Lakowicz, Principles of fluorescence spectroscopy (Kluwer Academic, New York, 1999).
  21. T. S. Forde and Q. S. Hanley, "Spectrally resolved frequency domain analysis of multi-fluorophore systems undergoing energy transfer," Appl. Spectro. 60, 1442-1452 (2006). [CrossRef]
  22. A. H. A. Clayton, Q. S. Hanley, and P. J. Verveer, "Graphical representation and multicomponent analysis of single frequency fluorescence lifetime imaging microscopy data," J. Microscopy 213, 1-5 (2003). [CrossRef]
  23. M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, "The phasor approach to fluorescence lifetime imaging analysis," Biophys. J. 94, L14-L16 (2007). [CrossRef] [PubMed]
  24. A. D. Elder, S. M. Matthews, J. Swartling, K. Yunus, J. H. Frank, C. M. Brennan, A. C. Fisher, and C. F. Kaminski, "The application of frequency-domain Fluorescence Lifetime Imaging Microscopy as a quantitative analytical tool for microfluidic devices," Opt. Express 14, 5456-5467 (2006). [CrossRef] [PubMed]
  25. Fianium Inc, SC450 datasheet, http://www.fianium.com.
  26. E. B. van Munster and T. W. J. Gadella, "Suppression of photobleaching-induced artifacts in frequency-domain FLIM by permutation of the recording order," Cytometry Part A 58A, 185-194 (2004). [CrossRef]
  27. J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, "A white light confocal microscope for spectrally resolved multidimensional imaging," J Microscopy 227, 203-215 (2007). [CrossRef]
  28. E. B. van Munster and T. W. J. Gadella, "phiFLIM: a new method to avoid aliasing in frequency-domain fluorescence lifetime imaging microscopy," J Microscopy 213, 29-38 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited