OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 3 — Feb. 2, 2009
  • pp: 1571–1576

Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas

S. Winnerl, B. Zimmermann, F. Peter, H. Schneider, and M. Helm  »View Author Affiliations

Optics Express, Vol. 17, Issue 3, pp. 1571-1576 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (280 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on emission and detection of pulsed terahertz radiation of radial and azimuthal polarization by microstructured photoconductive antennas. To this end the electrode geometry of the emitter is inverse to the desired THz field pattern and a second periodic structure prevents destructive interference effects. Beam profiles of freely propagating THz waves are studied for divergent and refocused beams. They can be well described as the lowest order Bessel-Gauss modes with a divergence comparable to linearly polarized Gaussian beams. Additionally, mode sensitive detection is demonstrated for radially polarized radiation.

© 2009 Optical Society of America

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(260.3090) Physical optics : Infrared, far

ToC Category:
Physical Optics

Original Manuscript: December 12, 2008
Revised Manuscript: January 20, 2009
Manuscript Accepted: January 22, 2009
Published: January 26, 2009

S. Winnerl, B. Zimmermann, F. Peter, H. Schneider, and M. Helm, "Terahertz Bessel-Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas," Opt. Express 17, 1571-1576 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. G. Hall, "Vector-beam solutions of Maxwell's wave equation," Opt. Lett. 21, 9-11 (1996). [CrossRef] [PubMed]
  2. K. S. Youngworth and T. G. Brown, "Focusing of high numerical aperture cylindrical-vector beams," Opt. Express 7, 77-87 (2000). [CrossRef] [PubMed]
  3. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, "Focusing light to a tighter spot," Opt. Comm. 179, 1-7 (2000). [CrossRef]
  4. H. P. Urbach and S. F. Pereira, "Field in focus with a maximum longitudinal electric component," Phys. Rev. Lett. 100, 123904 (2008). [CrossRef] [PubMed]
  5. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, "Creation of a needle of longitudinally polarized light in vacuum using binary optics," Nature Photon. 2, 501-505 (2008). [CrossRef]
  6. R. Dorn, S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  7. G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, "Intense longitudinal electric fields generated from transverse electromagnetic waves," Appl. Phys. Lett. 84, 3855-3857 (2004). [CrossRef]
  8. B. Hao and J. Leger, "Experimental measurement of longitudinal component in the vicinity of focused radially polarized beam," Opt. Express 15, 3550-3556 (2007). [CrossRef] [PubMed]
  9. K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004). [CrossRef] [PubMed]
  10. T.-I. Jeon, J. Zhang, and D. Grischkowsky, "THz Sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904 (2005). [CrossRef]
  11. J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, "Enhanced coupling of terahertz radiation to cylindrical waveguides," Opt. Express 14, 279-290 (2006). [CrossRef] [PubMed]
  12. J. A. Deibel, M. D. Escarra, and D. M. Mittleman, "Photoconductive terahertz antenna with radial symmetry," Electron. Lett. 41, 9-10 (2005). [CrossRef]
  13. J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, "Finite-element method simulations of guided wave phenomena at terahertz frequencies," Proc. IEEE 95,1624-1640, (2007). [CrossRef]
  14. G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, "Generation of radially polarized terahertz pulses via velocity-mismatched optical rectification," Opt. Lett. 32, 433-435 (2007). [CrossRef] [PubMed]
  15. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, "High-intensity terahertz radiation from a microstructured large-area photoconductor," Appl. Phys. Lett. 86, 121114, (2005). [CrossRef]
  16. A. Dreyhaupt, S. Winnerl, M. Helm, and T. Dekorsy, "Optimum excitation conditions for the generation of high-electric-field terahertz radiation from an oscillator-driven photoconductive device," Opt. Lett. 31, 1546-1548, (2006). [CrossRef] [PubMed]
  17. G. Matthäus, S. Nolte, R. Hohmuth, M. Voitsch, W. Richter, B. Pradarutti, S. Riemann, G. Notni, and A. Tünnermann, "Microlens coupled interdigital photoconductive switch," Appl. Phys. Lett. 93, 091110 (2008). [CrossRef]
  18. F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, "Coherent terahertz detection with a large-area photoconductive antenna," Appl. Phys. Lett. 91, 081109, (2007). [CrossRef]
  19. S. Winnerl, F. Peter, S. Nitsche, A. Dreyhaupt, B. Zimmermann, M. Wagner, H. Schneider, M. Helm, and K. Köhler, "Generation and detection of THz radiation with scalable antennas based on GaAs substrates with different carrier lifetimes," IEEE J. Sel. Top. Quantum Electron. 14, 449-457 (2008). [CrossRef]
  20. E. Castro-Camus, J. Lloyd-Hyghes, M. B. Johnston, M. D. Fraser, H. H. Tan, and C. Jagdish, "Polarization-sensitive terahertz detection by multicontact photoconductive receivers," Appl. Phys. Lett. 86, 254102 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited