OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 3 — Feb. 2, 2009
  • pp: 1622–1627

The possibility for surface plasmons lasers

R. Li, A. Banerjee, and H. Grebel  »View Author Affiliations


Optics Express, Vol. 17, Issue 3, pp. 1622-1627 (2009)
http://dx.doi.org/10.1364/OE.17.001622


View Full Text Article

Enhanced HTML    Acrobat PDF (237 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have demonstrated for the first time, attributes of a surface plasmons’ laser: threshold, gain, spectral line narrowing and feedback in the visible range. The surface metallic waveguides were consisted of a nano-scale hole-array in a 50 nm thick layer of aluminum oxide on top of aluminum substrate (anodized aluminum oxide or, AAO). In some cases, two-layer graphene was added on top of the perforated oxide layer, as well. The sub-wavelength array of holes enabled coupling to and from the waveguides as well as, providing feedback to the surface modes. The gain media molecules (fluorescein) were imbedded in the structure’s pores. Threshold and spectral line narrowing of 30% were clearly demonstrated when pumped with a pulsed laser.

© 2009 Optical Society of America

OCIS Codes
(140.3460) Lasers and laser optics : Lasers
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 18, 2008
Revised Manuscript: December 17, 2008
Manuscript Accepted: January 7, 2009
Published: January 27, 2009

Citation
R. Li, A. Banerjee, and H. Grebel, "The possibility for surface plasmons lasers," Opt. Express 17, 1622-1627 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-3-1622


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. J. Munk, Frequency selective surfaces (John Wiley & Sons, Inc., New York, 2000). [CrossRef]
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  3. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007) [CrossRef] [PubMed]
  4. M. A. Cooper  "Optical biosensors in drug discovery," Nat. Rev. Drug Discov. 1, 515-528 (2002). [CrossRef] [PubMed]
  5. J. Seidel, S. Grafstrom, and L. Eng, "Stimulated Emission of Surface Plasmons at the Interface between a Silver Film and an Optically Pumped Dye Solution," Phys. Rev. Lett. 94, 177401 (2005). [CrossRef] [PubMed]
  6. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, "Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium," Opt. Express 16, 1385 (2008). [CrossRef] [PubMed]
  7. A. Tredicucci, C.  Machl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "Single-mode surface plasmon laser," Conference on Laser and Electro Optics pp 266-267, San Francisco CA 2000.
  8. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design," Science 293, 1123-1125 (2001). [CrossRef] [PubMed]
  9. X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, "Ultraviolet photonic crystal laser," Appl. Phys. Lett. 85, 3657-3659 (2004). [CrossRef]
  10. D. J. Bergman and M. I. Stockman, "Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems," Phys. Rev. Lett. 90, 027402 (2003).
  11. S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Surface plasmons and photoluminescence," Phys. Rev. B 52, 11441-11445 (1995). [CrossRef]
  12. C. Zhang, K. Abdijalilov, and H. Grebel, "Surface enhanced Raman with anodized aluminum oxide films," J. Chemical Phys. 127, 044701 (2007). [CrossRef]
  13. O. Sternberg, K. P. Stewart, Y. Hor, A. Bandyopadhyay, J. F. Federici, M. Bornefeld, Y.-L. Mathis, D. Sliwinski, K.D. Möller, and H. Grebel, "Square-Shaped Metal Screens in the IR to THz Spectral Region: Resonance Frequency, Band gap and Bandpass Filter Characteristics," J. Appl. Phys. 104, 023103 (2008). [CrossRef]
  14. R-Q Li, A. Marek, A. I. Smirnov, and H. Grebel, "Polarization-dependent Fluorescence of Proteins Bound to Nanopore-confined Lipid Bilayers," J. Chem. Phys. 129, 095102 (2008). [CrossRef] [PubMed]
  15. A. Banerjee and H. Grebel, "Depositing Graphene Films on Solid and Perforated Substrates," Nanotechnology 19 1-5 art. no.365303 (2008). [CrossRef]
  16. R. Li and H. Grebel, Surface Enhanced Fluorescence (SEF): Polarization States Characteristics," submitted to IEEE Sensor J, 2008.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited