OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 3 — Feb. 2, 2009
  • pp: 1628–1635

Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration

M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton  »View Author Affiliations


Optics Express, Vol. 17, Issue 3, pp. 1628-1635 (2009)
http://dx.doi.org/10.1364/OE.17.001628


View Full Text Article

Enhanced HTML    Acrobat PDF (508 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a technique based on the selective liquid infiltration of photonic crystal (PhC) waveguides to produce very small dispersion slow light over a substantial bandwidth. We numerically demonstrate that this approach allows one to control the group velocity (from c/20 to c/110) from a single PhC waveguide design, simply by choosing the index of the liquid to infiltrate. In addition, we show that this method is tolerant to deviations in the PhC parameters such as the hole size, which relaxes the constraint on the PhC fabrication accuracy as compared to previous structural-based methods for slow light dispersion engineering.

© 2009 Optical Society of America

OCIS Codes
(260.2030) Physical optics : Dispersion
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Photonic Crystals

History
Original Manuscript: November 21, 2008
Revised Manuscript: January 12, 2009
Manuscript Accepted: January 16, 2009
Published: January 27, 2009

Citation
M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, "Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration," Opt. Express 17, 1628-1635 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-3-1628


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. F. Krauss, "Slow light in photonic crystals," Nat. Photonics 2, 448-450 (2008). [CrossRef]
  2. T. Baba, "Slow light in photonic crystals," Nat. Photonics 2, 465-473 (2008). [CrossRef]
  3. T. F. Krauss, "Slow light in photonic crystal waveguides," J. Phys. D. 40, 2666-2670 (2007). [CrossRef]
  4. E. Drouard, H. Hattori, C. Grillet, A. Kazmierczak, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "Directional channel-drop filter based on a slow Bloch mode photonic crystal waveguide section," Opt. Express 13, 3037-3048 (2005). [CrossRef] [PubMed]
  5. M. Soljacic, S. G. Johnson, S. H. Fan, M. Ibanescu, E. Ippen and J. D. Joannopoulos "Photonic-crystal slow-light enhancement of nonlinear phase sensitivity," J. Opt. Soc. Am. B 19, 2052-2059 (2002). [CrossRef]
  6. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, "Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth," Opt. Express 15, 219-226 (2007). [CrossRef] [PubMed]
  7. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa and L. Kuipers, "The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides," Opt. Express 14, 1658-1672 (2006). [CrossRef] [PubMed]
  8. A. Yu. Petrov and M. Eich, "Zero dispersion at small group velocities in photonic crystal waveguides," Appl. Phys. Lett. 85, 4866-4868 (2004). [CrossRef]
  9. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, "Photonic crystal waveguides with semi-slow light and tailored dispersion properties," Opt. Express 14, 9444-9450 (2006). [CrossRef] [PubMed]
  10. S. Kubo. D. Mori, and T. Baba, "Low-group-velocity and low-dispersion slow light in photonic crystal waveguides," Opt. Lett. 32, 2981-2983 (2007). [CrossRef] [PubMed]
  11. J. Li, T. P. White, L. O’ Faolain, A. Gomez-Iglesias, and T. F. Krauss, "Systematic design of flat band slow light in photonic crystal waveguides," Opt. Express 16, 6227-6232 (2008). [CrossRef] [PubMed]
  12. A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, "Dispersion engineering of photonic crystal waveguides with ring-shaped holes," Opt. Express 15, 8323-8328 (2007). [CrossRef] [PubMed]
  13. D. Psaltis, S. R. Quake and C. H. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006). [CrossRef] [PubMed]
  14. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007). [CrossRef]
  15. K. Busch and S. John "Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum," Phys. Rev. Lett. 83, 967-970 (1999). [CrossRef]
  16. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama and M. Ozaki, "Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal," Appl. Phys. Lett. 75, 932-934 (1999). [CrossRef]
  17. B. Wild, R. Ferrini, R. Houdre, M. Mulot, S. Anand and C. J. M. Smith, "Temperature tuning of the optical properties of planar photonic crystal microcavities," Appl. Phys. Lett. 84, 846-848 (2004). [CrossRef]
  18. B. Maune, M. Loncar, J. Witzens, M. Hochberg, T. Baehr-Jones, D. Psaltis, A. Scherer and Y. M. Qiu, "Liquid-crystal electric tuning of a photonic crystal laser," Appl. Phys. Lett. 85, 360-362 (2004). [CrossRef]
  19. D. Erickson, T. Rockwood, T. Emery, A. Scherer and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006). [CrossRef] [PubMed]
  20. F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettotti, L. Pavesi, S. L. Schweizer, R. Wehrspohn and D. Wiersma, "Rewritable photonic circuits," Appl. Phys. Lett. 89, 2111171-2111173 (2006). [CrossRef]
  21. C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D, Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103, 1-3, (2007). [CrossRef]
  22. U. Bog, C. L. C. Smith, M. W. Lee, S. Tomljenovic-Hanic, C. Grillet, C. Monat, L. O'Faolain, C. Karnutsch, T. F. Krauss, R. C. McPhedran, and B. J. Eggleton, "High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures," Opt. Lett. 33, 2206-2208 (2008). [CrossRef] [PubMed]
  23. C. L. Smith, U. Bog, S. Tomljenovic-Hanic, M. W. Lee, D. K. Wu, L. O'Faolain, C. Monat, C. Grillet, T. F. Krauss, C. Karnutsch, R. C. McPhedran, and B. J. Eggleton, "Reconfigurable microfluidic photonic crystal slab cavities," Opt. Express 16, 15887-15896 (2008). [CrossRef] [PubMed]
  24. S. F. Mingaleev, M. Schillinger, D. Hermann and K. Busch, "Tunable photonic crystal circuits: concepts and designs based on single-pore infiltration," Opt. Lett. 29, 2858-2860 (2004). [CrossRef]
  25. H. Kurt and D. S. Citrin, "Reconfigurable multimode photonic-crystal waveguides," Opt. Express 16, 11995-12001 (2008). [CrossRef] [PubMed]
  26. P. El-Kallassi, S. Balog, R. Houdré, L. Balet, L. Li, M. Francardi, A. Gerardino, A. Fiore, R. Ferrini and L. Zuppiroli, "Local infiltration of planar photonic crystals with UV-curable polymers," J. Opt. Soc. Am. B 25, 1562-1567 (2008). [CrossRef]
  27. J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, "Coupling into slow-mode photonic crystal waveguides," Opt. Lett. 32, 2638-2640 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited