OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 3 — Feb. 2, 2009
  • pp: 1636–1645

Extraordinary transmittance in three-dimensional crater, pyramid, and hole-array structures prepared through reversal imprinting of metal films

H. L. Chen, S. Y. Chuang, W. H. Lee, S. S. Kuo, W. F. Su, S. L. Ku, and Y. F. Chou  »View Author Affiliations

Optics Express, Vol. 17, Issue 3, pp. 1636-1645 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (2940 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We used a reversal imprinting-in-metal (RIM) process to fabricate various three-dimensional (3D) metal structures under low pressure. Molds featuring different shapes were used to pattern various sub-wavelength metal structures, including pyramidal, hole-array, and craterlike structures. Refractive index matching and cavity effects both enhanced the degree of transmission of these structured metal films. The crater-like structure appears to be a promising material because of the unique properties imparted by the elongated and gradually tapering spacing of its cavities. From both near-field simulations and experimentally obtained optical spectra, we found that the cavity effect in the crater-like structure led to significantly enhanced transmission of the optical intensity. Thus, this RIM process allows the ready fabrication of various two- and three-dimensional metallic structures for use in surface plasmon-based devices.

© 2009 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(220.3740) Optical design and fabrication : Lithography
(220.4000) Optical design and fabrication : Microstructure fabrication
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optical Design and Fabrication

Original Manuscript: November 21, 2008
Revised Manuscript: January 17, 2009
Manuscript Accepted: January 18, 2009
Published: January 27, 2009

H. L. Chen, S. Y. Chuang, W. H. Lee, S. S. Kuo, W. F. Su, S. L. Ku, and Y. F. Chou, "Extraordinary transmittance in three dimensional crater, pyramid, and hole-array structures prepared through reversal imprinting of metal films," Opt. Express 17, 1636-1645 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  2. J. B. Pendry, L. Martyn-Moreno, F. J. Garcia-Vidal, "Mimicking Surface plasmons with structured surfaces," Science 305, 847-848 (2004). [CrossRef] [PubMed]
  3. H. Gao, J. Joel Henzie, T. Odom, "Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays," Nano Lett. 6, 2104-2108 (2006). [CrossRef] [PubMed]
  4. W. C. Liu, "High sensitivity of surface plasmon of weakly-distorted metallic surfaces," Opt. Express 13, 9766-9773 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-24-9766 [CrossRef] [PubMed]
  5. P. Andrew, W. L. Barnes, "Energy transfer across a metal film mediated by surface plasmon polaritons," Science 306, 1002-1005 (2004). [CrossRef] [PubMed]
  6. J. M. Brockman, B. P. Nelson, R. M. Corn, "Surface plasmon resonance imaging measurements of ultrathin organic films," Annu. Rev. Phys. Chem. 51, 41-63 (2000). [CrossRef] [PubMed]
  7. J. Homola, Surface Plasmon Resonance Based Sensors (Springer, 2006). [CrossRef]
  8. T. H. Reilly, J. van de Lage, R. C. Tenent, A. J. Morfa and K. L. Rowlen, "Surface-plasmon enhanced transparent electrodes in organic photovoltaics," Appl. Phys. Lett. 92, 243304 (2008). [CrossRef]
  9. S. M. Orbons, A. Roberts, "Resonance and extraordinary transmission in annular aperture arrays," Opt. Express 14, 12623-12628 (2006). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-26-12623 [CrossRef] [PubMed]
  10. N. Bonod, S, Enoch, L. Li, E. Popov, M. Neviere, "Resonant optical transmission through thin metallic films with and without holes," Opt. Express 11, 482-490 (2003). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-5-482 [CrossRef] [PubMed]
  11. B. F. Bai, L. F. Li, L. J. Zeng, "Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes," Opt. Lett. 30, 2360-2362 (2005). [CrossRef] [PubMed]
  12. S. Wedge, I. R. Hooper, I. Sage, W. L. Barnes, "Light emission through a corrugated metal film: The role of cross-coupled surface plasmon polaritons," Phys. Rev. B 69, 245418 (2004). [CrossRef]
  13. Z. M. Zhu, T. G. J. Brown, "Nonperturbative analysis of cross coupling in corrugated metal films," Opt. Soc. Am. A 17, 1798-1806 (2000). [CrossRef]
  14. I. Avrutsky, Y. Zhao, V. Kochergin, "Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film," Opt. Lett. 25, 595-597 (2005). [CrossRef]
  15. S. Y. Chuang, H. L. Chen, S. S. Kuo, Y. H. Lai, C. C. Lee, "Using direct nanoimprinting to study extraordinary transmission in textured metal films," Opt. Express 16, 2415-2422 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2415 [CrossRef] [PubMed]
  16. D. Suh, J. Rhee, H. H. Lee, "Bilayer reversal imprint lithography direct metal-polymer transfer," Nanotechnology 15, 1103-1107 (2004). [CrossRef]
  17. J. W. Kim, K.Y. Yang, S. H. Hong, H. Lee, "Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method," Appl. Surf. Sci. 254, 5607-5611 (2008). [CrossRef]
  18. J. Zaumseil, A. Meitl, J. W. P. Hsu, B. R. Acharya, K. W. Baldwin, Y. L. Loo, J. A. Rogers, "Three dimensional and multilayer nanostructures formed by nanotransfer printing," Nano Lett. 3, 1223-1227 (2003). [CrossRef]
  19. Y. L. Loo, D. V. Lang, J. A. Rogers, J. W. P. Hsu, "Electrical contacts to molecular layers by nanotransfer printing," Nano Lett. 3, 913-917 (2003). [CrossRef]
  20. C. Peng, B. L. Cardozo, S. W. Pang, "Three-dimensional metal patterning over nanostructures by reversal imprint," J. Vac. Sci. Tech. B 26, 632-635 (2008). [CrossRef]
  21. J. Y. Ma, S. Y. Liu, D. W. Zhang, J. K. Yao, C. Xu, J. D. Shao, Y. X. Jin, Z. X. Fan, "Study of the surface plasma transmission properties of a Fabry-Perot resonator by numerical simulation," J. Opt. A 10, 035002 (2008) [CrossRef]
  22. H. Iu, J. Li, H. C. Ong, J. T. K. Wan, "Surface plasmon resonance in two-dimensional nanobottle arrays," Opt. Express 16, 10294-10302 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-14-10294 [CrossRef] [PubMed]
  23. E. D. Palik, Handbook of optical constants of solids (Academic, 1985)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited