OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 3 — Feb. 2, 2009
  • pp: 1679–1690

Characteristics of dielectric-band modified single-cell photonic crystal lasers

You-Shin No, Ho-Seok Ee, Soon-Hong Kwon, Sun-Kyung Kim, Min-Kyo Seo, Ju-Hyung Kang, Yong-Hee Lee, and Hong-Gyu Park  »View Author Affiliations

Optics Express, Vol. 17, Issue 3, pp. 1679-1690 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1075 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate new types of dielectric-band photonic crystal lasers in a two-dimensional modified single-cell cavity with enlarged air holes. Finite-difference time-domain simulations performed in real and Fourier spaces show that the dielectric-band cavity modes originating from the first band edge point in the dielectric band have mode patterns that are distinguishable from conventional air-band cavity modes. In our experiment, the observed multimode lasing peaks are identified as the hexapole and the monopole dielectric-band cavity modes through the spectral positions and mode images. The thresholds of these lasers are measured as ~340 μW and ~450 μW, respectively, at room temperature. In addition, using the simulation based on the actual fabricated structures, quality factors and mode volumes are computed as 4900 and 1.09 (λ/n)3 for the hexapole mode, and 4300 and 2.27 (λ/n)3 for the monopole mode, respectively.

© 2009 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.5300) Optoelectronics : Photonic integrated circuits
(140.3945) Lasers and laser optics : Microcavities
(220.4241) Optical design and fabrication : Nanostructure fabrication
(230.5298) Optical devices : Photonic crystals

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 9, 2008
Revised Manuscript: January 20, 2009
Manuscript Accepted: January 21, 2009
Published: January 27, 2009

You-Shin No, Ho-Seok Ee, Soon-Hong Kwon, Sun-Kyung Kim, Min-Kyo Seo, Ju-Hyung Kang, Yong-Hee Lee, and Hong-Gyu Park, "Characteristics of dielectric-band modified single-cell photonic crystal lasers," Opt. Express 17, 1679-1690 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Akahane, T. Asano, B.-S. Song and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  2. B.-S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005). [CrossRef]
  3. T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama and M. Notomi, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110 (2007). [CrossRef]
  4. K. Nozaki and T. Baba, "Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers," Appl. Phys. Lett. 88, 211101 (2006). [CrossRef]
  5. H.-S. Ee, K.-Y. Jeong, M.-K. Seo, Y.-H. Lee and H.-G. Park, "Ultrasmall square-lattice zero-cell photonic crystal laser," Appl. Phys. Lett. 93, 011104 (2008). [CrossRef]
  6. G.-H. Kim, Y.-H. Lee, A. Shinya and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode," Opt. Express 12, 6624-6631 (2004). [CrossRef] [PubMed]
  7. S.-H. Kwon, T. Sünner, M. Kamp and A. Forchel, "Ultrahigh-Q photonic crystal cavity created by modulating air hole radius of a waveguide," Opt. Express 16, 4605-4614 (2008). [CrossRef] [PubMed]
  8. H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian and C. M. Lieber, "A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source," Nat. Photonics 2, 622-626 (2008). [CrossRef]
  9. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya and E. Kuramochi, "Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip," Opt. Lett. 30, 2575-2577 (2005). [CrossRef] [PubMed]
  10. J. M. Gerard and B. Gayral, "Toward high-efficiency quantum-dot single-photon sources," Proc. SPIE 5361, 88 (2004). [CrossRef]
  11. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004). [CrossRef] [PubMed]
  12. J. D. Joannopoulos, S. G. Johnson, J. N. Winn and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, New Jersey, 2008).
  13. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim and Y.-H. Lee, "Electrically Driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004). [CrossRef] [PubMed]
  14. K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002). [PubMed]
  15. K. Srinivasan and O. Painter, "Fourier space design of high-Q cavities in standard and compressed hexagonal lattice photonic crystals," Opt. Express 11, 579-593 (2003). [CrossRef] [PubMed]
  16. Z. Zhang and M. Qiu, "Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs," Opt. Express 13, 2596-2604 (2005). [CrossRef] [PubMed]
  17. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto and J. Vuckovic, "Controlling the Spontaneous Emission Rate of Single Quantum Dots in a Two-Dimensional Photonic Crystal," Phys. Rev. Lett. 95, 013904 (2005). [CrossRef] [PubMed]
  18. This single-cell cavity is advantageous to the demonstration of the electrically driven laser by introducing a small central post underneath the cavity.
  19. K. Srinivasan, P. E. Barclay and O. Painter, "Fabrication-tolerant high quality factor photonic crystal microcavities," Opt. Express 12, 1458-1463 (2004). [CrossRef] [PubMed]
  20. T. Asano, B.-S. Song and S. Noda, "Analysis of the experimental Q factors (~1 million) of photonic crystal nanocavities," Opt. Express 14, 1996-2002 (2006). [CrossRef] [PubMed]
  21. S.-H. Kim and Y.-H. Lee, "Symmetry Relations of Two-Dimensional Photonic Crystal Cavity Modes," IEEE J. Quantum Electron. 39, 1081-1085 (2003). [CrossRef]
  22. S.-H. Kim, S.-K. Kim and Y.-H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B 73, 235117 (2006). [CrossRef]
  23. S. G. Johnson, S. Fan, A. Mekis and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001). [CrossRef]
  24. H.-Y. Ryu, M. Notomi and Y.-H. Lee, "High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities," Appl. Phys. Lett. 83, 4294-4296 (2003). [CrossRef]
  25. S.-H. Kwon, S.-H. Kim, S.-K. Kim and Y.-H. Lee, "Small, low-loss heterogeneous photonic bandedge laser," Opt. Express 12, 5356-5361 (2004). [CrossRef] [PubMed]
  26. A higher-order band edge mode with the wavelength of 1597 nm is observed in Fig. 7(a) (D).
  27. S.-K. Kim, G.-H. Kim, S.-H. Kim, S.-B. Kim, I. Kim and Y.-H. Lee, "Loss management using parity-selective barriers for single-mode, single-cell photonic crystal resonators," Appl. Phys. Lett. 88, 161119 (2006). [CrossRef]
  28. D. Englund and J. Vuckovic, "A direct analysis of photonic nanostructures," Opt. Express 14, 3472-3483 (2006). [CrossRef] [PubMed]
  29. The band edge laser is observed with more increased pumping power. Threshold of the band edge laser is ~650 μW in the PhC cavity of Fig. 6.
  30. M.-K. Seo, H.-G. Park, J.-K. Yang, J.-Y. Kim, S.-H. Kim and Y.-H. Lee, "Controlled sub-nanometer tuning of photonic crystal resonator by carbonaceous nano-dots," Opt. Express 16, 9829-9837 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited