OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 3 — Feb. 2, 2009
  • pp: 1772–1780

Metal-free scanning optical microscopy with a fractal fiber probe

C. M. Rollinson, S. M. Orbons, S. T. Huntington, B. C. Gibson, J. Canning, J. D. Love, A. Roberts, and D. N. Jamieson  »View Author Affiliations

Optics Express, Vol. 17, Issue 3, pp. 1772-1780 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (542 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Scanning Near-field Optical Microscopy (SNOM) is the leading instrument used to image optical fields on the nanometer scale. A metal-coating is typically applied to SNOM probes to define a subwavelength aperture and minimize optical leakage, but the presence of such coatings in the near field of the sample can often cause a substantial change in the sample emission properties. For the first time, the authors demonstrate near-field imaging on a metal substrate with a metal-free probe made from a novel structured optical fiber, designed to maximize optical throughput and potentially remove the need for the metal.

© 2009 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2350) Fiber optics and optical communications : Fiber optics imaging
(180.5810) Microscopy : Scanning microscopy
(060.4005) Fiber optics and optical communications : Microstructured fibers
(180.4243) Microscopy : Near-field microscopy
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:

Original Manuscript: December 12, 2008
Revised Manuscript: January 18, 2009
Manuscript Accepted: January 22, 2009
Published: January 29, 2009

Virtual Issues
Vol. 4, Iss. 4 Virtual Journal for Biomedical Optics

C. M. Rollinson, S. M. Orbons, S. T. Huntington, B. C. Gibson, J. Canning, J. D. Love, A. Roberts, and D. N. Jamieson, "Metal-free scanning optical microscopy with a fractal fiber probe," Opt. Express 17, 1772-1780 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, "Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991). [CrossRef] [PubMed]
  2. J. Kim and K.-B. Song, "Recent progress of nano-technology with NSOM," Micron 38, 409 (2007). [CrossRef]
  3. D. W. Pohl, "Optics at the nanometre scale," Philos. Trans. R. Soc. London Ser. A-Math.Phy. Engin. Scie. 362, 701-717 (2004). [CrossRef]
  4. D. I. Kavaldjiev, R. Toledo-Crow, and M. Vaez-Iravani, "On the heating of the fiber tip in a near-field scanning optical microscope," Appl. Phys. Lett. 67, 2771-2773 (1995). [CrossRef]
  5. N. E. Dickenson, E. S. Erickson, O. L. Mooren, and R. C. Dunn, "Characterization of power induced heating and damage in fiber optic probes for near-field scanning optical microscopy," Rev. Scie. Instrum. 78, 53712/53711-53712/53716 (2007).
  6. P. Hoffmann, B. Dutoit, and R. P. Salathe, "Comparison of mechanically drawn and protection layer chemically etched optical fiber tips," Ultramicroscopy 61, 165-170 (1995). [CrossRef]
  7. P. Lambelet, A. Sayah, M. Pfeffer, C. Philipona, and F. Marquis-Weible, "Chemically etched fiber tips for near-field optical microscopy: a process for smoother tips," Appl. Opt. 37, 7289-7292 (1998). [CrossRef]
  8. R. Stöckle, C. Fokas, V. Deckert, R. Zenobia, B. Sick, B. Hecht, and U. P. Wild, "High-quality near-field optical probes by tube etching," Appl. Phys. Lett. 75, 160 (1999). [CrossRef]
  9. S. T. Huntington, B. C. Gibson, J. Canning, K. Digweed-Lyytikainen, J. D. Love, and V. Steblina, "A fractal-based fibre for ultra-high throughput optical probes," Opt. Express 15, 2468-2475 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2468. [CrossRef] [PubMed]
  10. D. J. Shin, A. Chavez-Pirson, S. H. Kim, S. T. Jung, and Y. H. Lee, "Diffraction by a subwavelength-sized aperture in a metal plane," J. Opt. Soc. Am. A 18, 1477-1486 (2001). [CrossRef]
  11. S. Kühn and V. Sandoghdar, "Modification of single molecule fluorescence by a scanning probe," Appl. Phys.B Lasers Opt. (Germany) B84, 211-217 (2006).
  12. F. Zenhausern, M. P. O'Boyle, and H. K. Wickramasinghe, "Apertureless near-field optical microscope," Appl. Phys. Lett. 65, 1623-1625 (1994). [CrossRef]
  13. B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999). [CrossRef]
  14. D. Courjon, K. Sarayeddine, and M. Spajer, "Scanning tunneling optical microscopy," Opt. Commun. 71, 23-28 (1989). [CrossRef]
  15. R. C. Reddick, R. J. Warmack, D. W. Chilcott, S. L. Sharp, and T. L. Ferrell, "Photon scanning tunneling microscopy," Rev. Scie. Instrum. 61, 3669-3677 (1990). [CrossRef]
  16. E. L. Buckland, P. J. Moyer, and M. A. Paesler, "Resolution in collection-mode scanning optical microscopy," J. Appl. Phys. 73, 1018-1028 (1993). [CrossRef]
  17. V. Sandoghdar and S. Wegscheider, "Reflection scanning near-field optical microscopy with uncoated fiber tips: How good is the," J. Appl. Phys. 81, 2499 (1997). [CrossRef]
  18. D. Courjon, J. M. Vigoureux, M. Spajer, K. Sarayeddine, and S. Leblanc, "External and internal reflection near field microscopy: experiments and results," Appl. Opt. 29, 3734-3740 (1990). [CrossRef] [PubMed]
  19. J. Canning, E. Buckley, and K. Lyytikainen, "Propagation in air by field superposition of scattered light within a Fresnel fiber," Opt. Lett. 28, 230-232 (2003). [CrossRef] [PubMed]
  20. V. R. Almeida, X. Qianfan, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004). [CrossRef] [PubMed]
  21. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett. 29, 1626-1628 (2004). [CrossRef] [PubMed]
  22. M. A. Paesler and P. J. Moyer, Near-field optics : theory, instrumentation, and applications (Wiley, New York, 1996).
  23. C. Martelli, J. Canning, B. C. Gibson, and S. T. Huntington, "Bend loss in structured optical fibres," Opt. Express 15, 17639-17644 (2007). [CrossRef] [PubMed]
  24. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. BSolid State 6, 4370-4379 (1972). [CrossRef]
  25. M. Mansuripur, Classical optics and its applications (Cambridge University Press, Cambridge, 2002).
  26. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  27. Y. Poujet, M. Roussey, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range," Photon. Nanostruct. Fundam. Appl. 4, 47-53 (2006). [CrossRef]
  28. Y. Poujet, J. Salvi, F. I. Baida, D. Van Labeke, A. Perentes, C. Santschi, and P. Hoffmann, "Near-field optical images of subwavelength annular aperture arrays exhibiting an extraordinary transmission," J. Microsc. 229, 203 (2008). [CrossRef] [PubMed]
  29. S. M. Orbons, D. Freeman, B. Luther-Davies, B. C. Gibson, S. T. Huntington, D. N. Jamieson, and A. Roberts, "Optical properties of silver composite metamaterials," Physica B 394, 176-179 (2007). [CrossRef]
  30. S. T. Huntington and F. Ladouceur, "Evanescent fields - Direct measurement, modeling, and application," Microsc. Res. Tech. 70, 181-185 (2007). [CrossRef]
  31. G. A. Valaskovic, M. Holton, and G. H. Morrison, "Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes," Appl. Opt. 34, 1215-1228 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited