OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 3 — Feb. 2, 2009
  • pp: 1795–1805

Ultrashort pulse polarization control in silicon waveguides

Montasir Qasymeh, Sergey A. Ponomarenko, and Michael Cada  »View Author Affiliations

Optics Express, Vol. 17, Issue 3, pp. 1795-1805 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (553 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The nonlinear polarization dynamics of ultrashort optical pulses propagating in a low birefringent silicon waveguide is theocratically and numerically studied, with a static electric field applied across the waveguide. It is shown that the pulse shape and polarization evolution can be efficiently controlled by adjusting the magnitude of the applied dc field. It is also demonstrated that the polarization instability regime can be achieved in such waveguides – despite the presence of strong linear losses – by appropriately engineering the spatial distribution of the control field along the waveguide. The simulations indicate that short silicon waveguides can serve as a viable platform for developing re-configurable all-optical and/or optically assisted electro-optic devices in the spectral range spanning from near- to mid-infrared.

© 2009 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(250.4390) Optoelectronics : Nonlinear optics, integrated optics

ToC Category:
Nonlinear Optics

Original Manuscript: October 6, 2008
Revised Manuscript: December 12, 2008
Manuscript Accepted: December 17, 2008
Published: January 29, 2009

Montasir Qasymeh, Sergey A. Ponomarenko, and Michael Cada, "Ultrashort pulse polarization control in silicon waveguides," Opt. Express 17, 1795-1805 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Jalali, "Can silicon change photonics?," Phys. Status Solidi A 2, 213-224 (2008). [CrossRef]
  2. G. T. Reed, "Optical age of silicon," Nature 427, 595-596(2004). [CrossRef] [PubMed]
  3. L. Pavesi, "Will silicon be the photonic material of the third millennium?," J. Phys.: Condens. Matter 15, R1169- R1196 (2003). [CrossRef]
  4. Q. Lin, O. J. Painter, and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: modeling and applications," Opt. Express 15, 16604-16644 (2007). [CrossRef] [PubMed]
  5. R. Dekker, N. Usechak, M. Forst, and A. Driessen, "Ultrafastnonlinear all-optical processes in silicon-oninsulator waveguides," J. Phys. D: Appl. Phys. 40, R249-R271 (2007). [CrossRef]
  6. C. Manolatou and M. Lipson, "All-optical silicon modulators based on carrier injection by two-photon absorption," J. Lightwave Technol. 24, 1433-1439 (2006). [CrossRef]
  7. T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. Van Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, "High speed logic gate using two-photon absortption in silicon wavegiudes," Opt. Commun. 265, 171-174 (2006). [CrossRef]
  8. R. Dekker, A. Driessen, T. Wahlbrink, C. Moormann, J. Niehusmaan, and M. Forst, "Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 femtosecond pulses," Opt. Express 14, 8336-8346 (2006). [CrossRef] [PubMed]
  9. V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, "Parametric Raman wavelength conversion in scaled silicon waveguides," J. Lightwave Technol.  23, 2094-2102 (2005). [CrossRef]
  10. R. Claps, D. Dimitropoulos, V. Raghunathan,Y. Han, and B. Jalali, "Observation of stimulated Raman amplification in silicon waveguides," Opt. Express 11, 1731-1739 (2003). [CrossRef] [PubMed]
  11. M. A. Forst, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, "Broad-band optical parametric gain on a silicon photonic chip," Nature 441, 960-963 (2006). [CrossRef]
  12. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005). [CrossRef] [PubMed]
  13. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, "Ultralow-threshold microcavity Raman laser on a microelectronic chip," Opt. Lett. 29, 1224-1227 (2004). [CrossRef] [PubMed]
  14. L. Yin, Q. Lin, and G. P. Agrawal, "Soliton fission and suprercontinuum generation in silicon waveguides," Opt. Lett. 32, 391-393 (2007). [CrossRef] [PubMed]
  15. J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fuachet, "Optical solitons in a silicon waveguide," Opt. Express 15, 7682-7688 (2007). [CrossRef] [PubMed]
  16. V. M. N. Passaro and F. De Leonardis, "Solitons in SOI optical waveguides," Adv. Studies Theor. Phys. 2, 769-785 (2008).
  17. M. Li, S. A. Ponomarenko, M. Qasymeh, and M. Cada, "Electronic control of soliton power transfer in silicon nanocrystal," Opt. Express 16, 9587-9594 (2008). [CrossRef] [PubMed]
  18. M. Cada, M. Qasymeh, and J. Pistora, "Electrically and optically controlled cross-polarized wave conversion," Opt. Express 16, 3083-3100 (2008). [CrossRef] [PubMed]
  19. H. G. Winful, "Self-induced polarization changes in birefringent optical fibers," Appl. Phys. Lett. 47, 213-215 (1985). [CrossRef]
  20. G. P. Agrawal, Nonlinear fiber optics, 4th ed. (Academic Press, Boston, 2007).
  21. J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, and P. M. Fauchet, "Anisotropic nonlinear response of silicon in the near-infrared region," Appl. Phys. Lett. 90, 071113 (2007). [CrossRef]
  22. R. Salem and T. E. Murphy, "Polarization-insensitive cross correlation using two-photon absorption in a silicon photodiode," Opt. Lett. 29, 1524-1526 (2004). [CrossRef] [PubMed]
  23. H. G. Winful, "Polarization instabilities in birefringent nonlinear media : apllication to fiber-optics devices," Opt. Lett. 11, 33-35 (1986). [CrossRef] [PubMed]
  24. Q. Lin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Express 14, 4786-4799 (2006). [CrossRef] [PubMed]
  25. B. Cowan, "Optical damage threshold of silicon for ultrafastinfrared pulses," Advanced accelerator concepts: 12th advanced accelerator concepts workshop.AIP Conf. Proc. 877, 837-843(2006).
  26. Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet, and G. P. Agrawal, "Dispersion of silicon nonlinearities in the near infrared region," Appl. Phys. Lett. 91, 021111 (2007). [CrossRef]
  27. S. Trillo, S. Wabnitz, W. C. Banyai, N. Finlayson, C. T. Seaton, G. I. Stegeman, and R. H. Stolen, "Observation of ultrafast nonlinear polarization switching induced by polarization instability in a birefringent fiber rocking filter," IEEE J. Quantum Electron. 25, 104-112 (1989). [CrossRef]
  28. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, "Optical dispersion, two photon absorption and self-phase modulation in silicon at 1.5μm wavelength," Appl. Phys. Lett. 80, 416-418 (1985). [CrossRef]
  29. H. Garcia and R. Kalyanaraman, "Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz-Keldysh effect in indirect gap semiconductors," J. Phys. B: Mol. Opt. Phys. 39, 2737-2746 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited