OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 3 — Feb. 2, 2009
  • pp: 1817–1830

Polarization insensitive imaging through polarization gratings

Sarik R. Nersisyan, Nelson V. Tabiryan, Landa Hoke, Diane M. Steeves, and Brian Kimball  »View Author Affiliations

Optics Express, Vol. 17, Issue 3, pp. 1817-1830 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (809 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Liquid crystal polarization gratings exhibit high diffraction efficiency (~ 100%) in thin material layers comparable to the radiation wavelength. We demonstrate that they can be combined for polarization-insensitive imaging and optical switching applications. A pair of closely spaced, parallel oriented, cycloidal polarization gratings is capable of canceling the diffractive property of an individual grating. As a result, the phase of the beam is not distorted, and holographic images can be formed through them. An anti-parallel arrangement results in a broader effective diffraction band and doubles the diffraction angle. Broadband diffraction spanning from 480 nm to beyond 900 nm wavelengths has been obtained for a pair of gratings with 500 nm and 633 nm peak diffraction wavelengths. Liquid crystal polymer cycloidal gratings were used in the study showing 98% diffraction efficiency over a large area, and allowed for the use of laser beams expanded to 25 mm. The characteristics of combined cycloidal gratings were tested with laser beams at both UV and red wavelengths.

© 2009 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(160.3710) Materials : Liquid crystals

ToC Category:
Diffraction and Gratings

Original Manuscript: November 18, 2008
Revised Manuscript: January 12, 2009
Manuscript Accepted: January 18, 2009
Published: January 29, 2009

Sarik R. Nersisyan, Nelson V. Tabiryan, Landa Hoke, Diane M. Steeves, and Brian R. Kimball, "Polarization insensitive imaging through polarization gratings," Opt. Express 17, 1817-1830 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. S. Patel and M. W. Maeda, "Tunable polarization diversity liquid-crystal wavelength filter," IEEE Photon. Technol. Lett. 3, 739-740 (1991). [CrossRef]
  2. D.-W. Kim, C.-J. Yu, H.-R. Kim, S.-J. Kim, and S.-D. Lee, "Polarization-insensitive liquid crystal Fresnel lens of dynamic focusing in an orthogonal binary configuration," Appl. Phys. Lett. 88, 203505-203507 (2006). [CrossRef]
  3. S. V. Belayer, M. Schadt, M. I. Barnik, J. Funfschilling, N. V. Malimoneko, and K. Schmitt, "Large aperture polarized light source and novel liquid crystal display operating modes," Jpn. J. Appl. Phys. 29, L634-L637 (1990). [CrossRef]
  4. C. Nicolas, B. Loiseaux, and J. P. Huignard, "Polarized light source for LCD projection," Displays 16, 43-48 (1995). [CrossRef]
  5. W. C. Yip, H. C. Huang, and H. S. Kwok, "Efficient polarization converter for projection displays," Appl. Opt. 36, 6453-6457 (1997). [CrossRef]
  6. B. Ya. Zeldovich and N. V. Tabirian, "Devices for displaying visual information," Invention Disclosure, School of Optics / CREOL, July 2000.
  7. H. Sarkissian, J. B. Park, N. V. Tabirian, and B. Ya. Zeldovich, "Periodically aligned liquid crystal: potential application for projection displays and stability of LC configuration," Optics in the Southeast 2003, Orlando, FL; Conference Program, PSE 02.
  8. H. Sarkissian, B. Park, B. Zeldovich, and N. Tabirian, "Potential Application of Periodically Aligned Liquid Crystal Cell for Projection Displays," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper JThE12. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2005-JThE12. [PubMed]
  9. G. Cincotti, "Polarization gratings: Design and applications," IEEE J. Quantum Electron. 39, 1645-1652 (2003). [CrossRef]
  10. W. M. Jones, B. Conover, and M. J. Escuti, "Evaluation of Projection Schemes for the Liquid Crystal Polarization Grating Operating on Unpolarized Light," SID 06 DIGEST • 1015-1018, 2006. [CrossRef]
  11. M. J. Escuti and W. M. Jones, "A polarization-independent liquid crystal spatial-light-modulator," Proc. SPIE 6332, 22 (2006).
  12. C. Provenzano, P. Pagliusi, and G. Cipparrone, "Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces," Appl. Phys. Lett. 89, 121105 (2006). [CrossRef]
  13. C. Provenzano, P. Pagliusi, and G. Cipparrone, "Electrically tunable two-dimensional liquid crystals gratings induced by polarization holography," Opt. Express 15, 5872-5878 (2007). [CrossRef] [PubMed]
  14. H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, B. Ya. Zeldovich, "Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals," Opt. Lett. 31, 2248 (2006). [CrossRef] [PubMed]
  15. T. Seki, M. Sakuragi, Y. Kawanishi, Y. Suzuki, and T. Tamaki, "Command Surfaces of Langmuir-Blodgett Films. Photoregulations of Liquid Crystal Alignment by Molecularly Tailored Surface Azobenzene Layers," Langmuir 9, 211-218 (1993). [CrossRef]
  16. H. Knobloch, H. Orendi, B. Stiller, M. Bachel, W. Knoll, T. Seki, S. Ito, L. Brehmer, "Command surface induced switching of the optical properties of liquid crystalline thin film structures," Synthetic Metals 81, 297-300 (1996). [CrossRef]
  17. K. Ichimura, "Photoalignment of liquid-crystal systems," Chem. Rev. 100, 1847-1873, 2000. [CrossRef]
  18. H. Knoll, "Photoisomerism of azobenzenes," in Organic Photochemistry and Photobiology, W. Horspool, and F. Lenci eds., (CRC Press, Boca Raton, 2004).
  19. J. Griffiths, "Photochemistry of azobenzene and its derivatives," Chem. Soc. Rev. 1, 481-493 (1972). [CrossRef]
  20. G. Crawford, J. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. Pelcovits, "Liquid-crystal diffraction gratings using polarization holography alignment techniques," J. Appl. Phys. 98, 123102-1-123102-10, (2005). [CrossRef]
  21. H. Sarkissian, N. Tabiryan, B. Park, B. Zeldovich, "Periodically Aligned Liquid Crystal: Potential application for projection displays," Mol. Cryst. Liq. Cryst. 451, 1-19 (2006). [CrossRef]
  22. C. Oh and M. J. Escuti, "Achromatic diffraction from polarization gratings with high efficiency," Opt. Lett. 33, 2287-2289 (2008). [CrossRef] [PubMed]
  23. H. Seiberle, C. Benecke and T. Bachels, "Photo-Aligned Anisotropic Optical Thin Films," SID 03 Digest, pp. 1162-1165.
  24. V. G Chigrinov, V. M. Kozenkov, and H. S. Kwok, "Photoaligning: Physics and Applications in Liquid Crystal Devices," (Wiley VCH, 2008).
  25. T. J. Bunning, L. V. Natarajan, R. L. Sutherland, and V. P. Tondiglia, "Holographic polymer-dispersed liquid crystals (H-PDLCs),"Annual Rev. Mater. Sci. 30, 83-115 (2000). [CrossRef]
  26. A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, T. Bunning, "Optically Switchable Bragg Reflectors," Adv. Mater. 16, 1453-1456 (2004). [CrossRef]
  27. H. Sarkissian, B. Ya Zeldovich, and N. V. Tabiryan, "Polarization-universal bandgap in periodically twisted nematics," Opt. Lett. 31, 1678-1680 (2006). [CrossRef] [PubMed]
  28. H. Sarkissian, B. Zeldovich, and N. Tabiryan, "Longitudinally modulated bandgap nematic structure," J. Opt. Soc. Am. B 23, 1712-1717 (2006). [CrossRef]
  29. S. Serak, N. Tabiryan, and B. Zeldovich, "High-efficiency 1.5 μm thick optical axis grating and its use for laser beam combining," Opt. Lett. 32, 169-171 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited