OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 3 — Feb. 2, 2009
  • pp: 1859–1864

Tailoring optical transmission via the arrangement of compound subwavelength hole arrays

Jian-Qiang Liu, Meng-Dong He, Xiang Zhai, Ling-Ling Wang, Shuangchun Wen, Li Chen, Zhe Shao, Qing Wan, B. S. Zou, and Jianquan Yao  »View Author Affiliations

Optics Express, Vol. 17, Issue 3, pp. 1859-1864 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (128 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The transmission properties of light through metal films with compound periodic subwavelength hole arrays is numerically investigated by using the finite-difference time-domain (FDTD) method. The sharp dips in the transmission bands, together with the suppression of surface plasmon resonance (SPR) (0, 1) peak, are found when two square holes in every unit cell are arranged asymmetrically along the polarization direction of the incident light. However, the shape of transmission spectra is not sensitive to the symmetry if the holes are arranged perpendicular to the propagation direction of surface plasmon polaritons (SPPs). The physics origin of these phenomena is explained qualitatively by the phase resonance of SPPs.

© 2009 Optical Society of America

OCIS Codes
(120.7000) Instrumentation, measurement, and metrology : Transmission
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: November 14, 2008
Revised Manuscript: January 18, 2009
Manuscript Accepted: January 19, 2009
Published: January 29, 2009

Jian-Qiang Liu, Meng-Dong He, Xiang Zhai, Ling-Ling Wang, Shuangchun Wen, Li Chen, Zhe Shao, Qing Wan, B. S. Zou, and Jianquan Yao, "Tailoring optical transmission via the arrangement of compound subwavelength hole arrays," Opt. Express 17, 1859-1864 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature (London) 391, 667-669 (1998). [CrossRef]
  2. F. J. García de Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267-1290 (2007). [CrossRef]
  3. C. Genet and T. W. Ebbesen, "Light in tiny holes," Nature (London) 445, 39-46 (2007). [CrossRef]
  4. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, "Transmission resonance on metallic gratings with very narrow slits," Phys. Rev. Lett. 83, 2845-2848 (1999). [CrossRef]
  5. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, "Transmission of light through a periodic array of slits in a thick metallic film," Opt. Express 13, 4485-4491 (2005). [CrossRef] [PubMed]
  6. L. Martín-Moreno and F. J. García-Vidal, "Optical transmission through circular hole arrays in optically thick metal films," Opt. Express 12, 3619-3628 (2004). [CrossRef]
  7. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). [CrossRef] [PubMed]
  8. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, "Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes," Phys. Rev. Lett. 92, 183901 (2004). [CrossRef] [PubMed]
  9. Z. Ruan and M. Qiu, "Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances," Phys. Rev. Lett. 96, 233901 (2006). [CrossRef] [PubMed]
  10. C. Rockstuhl and F. Lederer, "Enhanced transmission of periodic, quasperiodic and random nanoaperture arrays," Appl. Phys. Lett. 91, 151109 (2007). [CrossRef]
  11. A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcıa-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B 76, 195414 (2007). [CrossRef]
  12. D. C. Skigin and R. A. Depine, "Transmission resonances of metallic compound gratings with subwavelength slits," Phys. Rev. Lett. 95, 217402 (2005). [CrossRef] [PubMed]
  13. D. C. Skigin and R. A. Depine, "Narrow gaps for transmission through metallic structured gratings with subwavelength slits," Phys. Rev. E 74, 046606 (2006). [CrossRef]
  14. Y. G. Ma, X. S. Rao, G. F. Zhang, and C. K. Ong, "Microwave transmission modes in compound metallic gratings," Phys. Rev. B 76, 085413 (2007). [CrossRef]
  15. Q. J. Wang, J. Q. Li, C. P Huang, C. Zhang, and Y. Y. Zhu, "Enhanced optical transmission through metal films with rotation-symmetrical hole arrays," Appl. Phys. Lett. 87, 091105 (2005). [CrossRef]
  16. Q. J. Wang, C. P. Huang, J. Q. Li, and Y. Y. Zhu, "Suppression of transmission minma and maxima with structural metal surface," Appl. Phys. Lett. 89, 221121 (2006). [CrossRef]
  17. Y. H Ye, Z. B Wang, and Y. Cao, "Enhanced transmission through metal films perforated with circular and cross-dipole apertures," Appl. Phys. Lett. 91, 251105 (2007). [CrossRef]
  18. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston. 2000).
  19. E. D. Palik, Handbook of Optical Constants and Solids (Academic, New York, 1985).
  20. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998). [CrossRef]
  21. L. Salomon, F. Grillot, A. V. Zayats, and F. de. Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001). [CrossRef] [PubMed]
  22. H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature,  452, 728-731 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited