OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 3 — Feb. 2, 2009
  • pp: 1935–1946

Improved method for estimating the minimum length of modal filters fabricated for stellar interferometry

Sonali Dasgupta, N.G.R. Broderick, David J. Richardson, Tomer Lewi, and Abraham Katzir  »View Author Affiliations

Optics Express, Vol. 17, Issue 3, pp. 1935-1946 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (255 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an improved theoretical model to estimate the minimum fiber length required for achieving a desired degree of wavefront filtering in stellar interferometry. The proposed model is based on modal analysis of the fiber and is compared with numerical results obtained through the beam propagation method as well as with reported experimental observations. We also study the effect of introducing a spatial filter at the output end of the fiber and show that the required fiber length can be reduced significantly by introducing a circular aperture of optimum radius after the fiber.

© 2009 Optical Society of America

OCIS Codes
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(350.1260) Other areas of optics : Astronomical optics
(350.2450) Other areas of optics : Filters, absorption

Original Manuscript: October 27, 2008
Revised Manuscript: December 24, 2008
Manuscript Accepted: January 18, 2009
Published: January 30, 2009

Virtual Issues
Focus Issue: Astrophotonics (2009) Optics Express

Sonali Dasgupta, N. G. Broderick, David J. Richardson, Tomer Lewi, and Abraham Katzir, "Improved method for estimating the minimum length of modal filters fabricated for stellar interferometry," Opt. Express 17, 1935-1946 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. http://exoplanets.org/planets.html.
  2. http://www.esa.int/esaSC/SEMYZF9YFDD index 0.html.
  3. R.N. Bracewell, "Detecting nonsolar planets by spinning infrared interferometer," Nature 274, 780 - 781 (1978). [CrossRef]
  4. K. Wallace, G. Hardy, and E. Serabyn, "Deep and stable interferometric nulling of broadband light with implications for observing planets around nearby stars," Nature 406, 700-702 (2000). [CrossRef] [PubMed]
  5. J. R. P. Angel and N. J. Woolf, "An Imaging Nulling Interferometer to Study Extrasolar Planets," The Astrophys. J. 475, 373-379 (1997), http://www.journals.uchicago.edu/doi/abs/10.1086/303529. [CrossRef]
  6. www.esa.int/esaSC/120382 index 0 m.html.
  7. http://planetquest.jpl.nasa.gov/TPF/tpf index.cfm.
  8. E. Serabyn, S. Martin, and G. Hardy, "Progress toward space-based nulling interferometry: comparison of null stabilization approaches," Aerospace Conference, 2001, IEEE Proceedings. 4, 4/2027-4/2036 (2001). [CrossRef]
  9. B. Mennesson, M. Ollivier, and C. Ruilier, "Use of single-mode waveguides to correct the optical defects of a nulling interferometer," J. Opt. Soc. Am. A 19, 596-602 (2002), http://josaa.osa.org/abstract.cfm?URI=josaa-19-3-596. [CrossRef]
  10. M. Ollivier and J.-M. Mariotti, "Improvement in the rejection rate of a nulling interferometer by spatial filtering," Appl. Opt. 36, 5340-5346 (1997), http://ao.osa.org/abstract.cfm?URI=ao-36-22-5340. [CrossRef] [PubMed]
  11. J. Flanagan and D. Richardson, "Microstructured fibres for broadband wavefront filtering in the mid-IR," Opt. Express 14, 11773-11786 (2006). [CrossRef] [PubMed]
  12. O. Wallner and W. Leeb, "Minimum length of a single-mode fibre spatial filter," JOSA A 19, 2445-2448 (2002). [CrossRef] [PubMed]
  13. J. C. Corbett and J. R. Allington-Smith, "Coupling starlight into single-mode photonic crystal fiber using a field lens," Opt. Express 13, 6527-6540 (2005). [CrossRef] [PubMed]
  14. T. Lewi, S. Shalem, A. Tsun, and A. Katzir, "Silver halide single-mode fibers with improved properties in the infrared," Appl. Phys. Lett. 91, 2511,112-1 - 2511,112-3 (2007). [CrossRef]
  15. A. Ksendzov, O. Lay, S. Martin, J. S. Sanghera, L. E. Busse, W. H. Kim, P. C. Pureza, V. Q. Nguyen, and I. D. Aggarwal, "Characterization of mid-infrared single mode fibers as modal filters," Appl. Opt. 46, 7957-7962 (2007). [CrossRef] [PubMed]
  16. P. Houizot, C. Boussard-Pl’edel, A. J. Faber, L. K. Cheng, B. Bureau, P. A. V. Nijnatten, W. L. M. Gielesen, J. P. do Carmo, and J. Lucas, "Infrared single mode chalcogenide glass fiber for space," Opt. Express 15, 12,529- 12,538 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-19-12529. [CrossRef]
  17. W. Klaus, and W. R. Leeb, "Transient fields in the input coupling region of optical single-mode waveguides," Opt. Express 15, 11808-11826(2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-19-11808. [CrossRef] [PubMed]
  18. A. W. Snyder and J.D. Love, Optical waveguide theory ((Chapman/Kluwer, 1983/2000).
  19. G. Huss, P. Leproux, F. Reynaud, and V. Doya, "Spatial filtering efficiency of single-mode optical fibers for stellar interferometry applications: phenomenological and numerical study," Opt. Commun. 244, 209-217 (2005). [CrossRef]
  20. A. Ksendzov, T. Lewi, O. P. L. S. R. Martin, R. O. Gappinger, P. R. Lawson, R. D. Peters, S. Shalem, A. Tsun, and A. Katzir, "Modal filtering for midinfrared nulling interferometry using single mode silver halide fibers," Appl. Opt. 47, 5728-5735 (2008). [CrossRef]
  21. D. Marcuse, "Radiation losses of the dominant mode in round dielectric waveguides," Bell Syst. Tech. J. 49, 1665-1693 (1970).
  22. Z. L. Wang, H. Ogura, and N. Takahashi, "Radiation and coupling of guided modes in an optical fiber with a slightly rough boundary: stochastic functional approach," J. Opt. Soc. Am. A 12, 1489-1500 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited