OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 4 — Feb. 16, 2009
  • pp: 2057–2079

A vector radiative transfer model for coupled atmosphere and ocean systems based on successive order of scattering method

Peng-Wang Zhai, Yongxiang Hu, Charles R. Trepte, and Patricia L. Lucker  »View Author Affiliations

Optics Express, Vol. 17, Issue 4, pp. 2057-2079 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (267 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A vector radiative transfer model has been developed for coupled atmosphere and ocean systems based on the Successive Order of Scattering (SOS) Method. The emphasis of this study is to make the model easy-to-use and computationally efficient. This model provides the full Stokes vector at arbitrary locations which can be conveniently specified by users. The model is capable of tracking and labeling different sources of the photons that are measured, e.g. water leaving radiances and reflected sky lights. This model also has the capability to separate florescence from multi-scattered sunlight. The δ - fit technique has been adopted to reduce computational time associated with the strongly forward-peaked scattering phase matrices. The exponential - linear approximation has been used to reduce the number of discretized vertical layers while maintaining the accuracy. This model is developed to serve the remote sensing community in harvesting physical parameters from multi-platform, multi-sensor measurements that target different components of the atmosphere-oceanic system.

© 2009 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: December 15, 2008
Revised Manuscript: January 20, 2009
Manuscript Accepted: January 26, 2009
Published: February 2, 2009

Peng-Wang Zhai, Yongxiang Hu, Charles R. Trepte, and Patricia L. Lucker, "A vector radiative transfer model for coupled atmosphere and ocean systems based on successive order of scattering method," Opt. Express 17, 2057-2079 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  2. R. W. Preisendorfer, Radiative Transfer on Discrete Spaces (Pergamon Press, Oxford, 1965).
  3. H. C. van de Hulst, Multiple Light Scattering: Tables, Formulas, and Applications 1 and 2 (Academic Press, New York, 1980).
  4. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, San Diego, Calif., 1994).
  5. K.N. Liou, An Introduction to Atmospheric Radiation 2nd edition, (Academic, San Diego 2002).
  6. A. Marshak, A. B. Davis (Eds.), 3D Radiative Transfer in Cloudy Atmospheres (Springer, 2005). [CrossRef]
  7. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Multiple Scattering of Light by Particles (Cambridge University Press, New York, 2006).
  8. K. N. Liou, "A numerical experiment on Chandrasekhar’s discrete-ordinate method for radiative transfer: Application to cloudy and hazy atmospheres," J. Atmos. Sci. 30, 1303-1326 (1973). [CrossRef]
  9. K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, "Numerically stable algorithm for discrete-ordinate method radiative trasfer in multiple scattering and emitting layered media," Appl. Opt. 27, 2502-2509 (1988). [CrossRef] [PubMed]
  10. F. Weng, "A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere-I. theory," J. Quant. Spectrosc. Radiat. Transfer 47, 19-33 (1992). [CrossRef]
  11. F. Weng, "A multi-layer discrete-ordinate method for vector radiative transfer in a vertically-inhomogeneous, emitting and scattering atmosphere-II. Application," J. Quant. Spectrosc. Radiat. Transfer 47, 35-42 (1992). [CrossRef]
  12. A. Sánchez, T. F. Smith, and W. F. Krajewski, "A three-dimensional atmospheric radiative transfer model based on the discrete-ordinates method," Atmos. Research 33, 283-308 (1994). [CrossRef]
  13. J. L. Haferman, T. F. Smith, and W. F. Krajewski, "A multi-dimensional discrete-ordinates method for polarized radiative transfer. Part I: validation for randomly oriented axisymmetric particles," J. Quant. Spectrosc. Radiat. Transfer 58, 379-398 (1997). [CrossRef]
  14. F. M. Schulz, K. Stanes, and F. Weng, "VDISORT: An improved and generalized discrete ordinate method for polarized vector radiative transfer," J. Quant. Spectrosc. Radiat. Transfer 61, 105-122 (1999). [CrossRef]
  15. C. E. Siewert, "A discrete-ordinates solution for radiative-transfer models that include polarization effects," J. Quant. Spectrosc. Radiat. Transfer 64, 227-254 (2000). [CrossRef]
  16. V. A. Ambartzumian, "A new method for computing light scattering in turbid media," Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz. 3, 97-104 (1942).
  17. V. A. Ambartzumian, Theoretical Astrophysics (Pergamon Press, New York, 1958).
  18. C. N. Adams and G. W. Kattawar, "Solutions of the equation of radiative transfer by an invariant imbedding approach," J. Quant. Spectrosc. Radiat. Transfer 10, 341-366 (1970). [CrossRef]
  19. M. I. Mishchenko, "Reflection of polarized light by plane-parallel slabs containing randomly-oriented, nonspherical particles," J. Quant. Spectrosc. Radiat. Transfer 46, 171-181 (1991). [CrossRef]
  20. M. I. Mishchenko and L. D. Travis, "Satellite retrieval of aerosol properties over the ocean using polarization as well as intensity of reflected sunlight," J. Geophys. Res. 102, 16989-17013 (1997). [CrossRef]
  21. G. G. Stokes, "On the intensity of the light reflected from or transmitted through a pile of plates," Proc. Roy. Soc., London  11, 545-556 (1862).
  22. J. E. Hansen, "Multiple scattering of polarized light in planetary atmospheres. part II. Sunlight reflected by terrestrial water clouds," J. Atmos. Sci. 28, 1400-1426 (1971). [CrossRef]
  23. G. N. Plass, G. W. Kattawar, and F. E. Catchings, "Matrix operator theory of radiative transfer. 1: Rayleighscattering," Appl. Opt. 12, 314-329 (1973). [CrossRef] [PubMed]
  24. G.W. Kattawar, G. N. Plass, and F. E. Catchings, "Matrix operator theory of radiative transfer. 2: scattering from marine haze, Appl. Opt. 12, 1071-1084 (1973). [CrossRef] [PubMed]
  25. P. C. Waterman, "Matrix-exponential description of radiative transfer, J. Opt. Soc. Am. 71, 410-422 (1981).
  26. T. Nakajima, M. Tanaka, "Effect of wind-generated waves on the transfer of solar radiation in the atmosphereocean system," J. Quant. Spectrosc. Radiat. Transfer 29, 521-537 (1983). [CrossRef]
  27. J. Fischer and H. Grassl, "Radiative transfer in an atmosphere-ocean system: an azimuthally dependent matrix operator approach," Appl. Opt. 23, 1032-1039 (1984). [CrossRef] [PubMed]
  28. Q. Liu and E. Ruprecht, "Radiative transfer model: matrix operator method," Appl. Opt. 35, 4229-4237 (1996). [CrossRef] [PubMed]
  29. P. Zhai, G.W. Kattawar, and P. Yang, "Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. II. The hybrid matrix operator-Monte Carlo method," Appl. Opt. 47, 1063-1071 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ao-47-8-1063. [CrossRef] [PubMed]
  30. V. Kourganoff, Basic Methods in Transfer Problems (Clarendon Press, London, 1952).
  31. R. D. M. Garcia and C. E. Siewert, "A generalized spherical harmonics solution for radiative transfer models that include polarization effects," J. Quant. Spectrosc. Radiat. Transfer 36, 401-423 (1986). [CrossRef]
  32. E. P. Zege, I. L. Katsev, and I. N. Polonsky, "Multicomponent approach to light propagation in clouds and mists," Appl. Opt. 32, 2803-2812 (1993). [CrossRef] [PubMed]
  33. E. P. Zege, and L. I. Chaikovskaya, "New approach to the polarized radiative transfer problem," J. Quant. Spectrosc. Radiat. Transfer 55, 19-31 (1996). [CrossRef]
  34. K. F. Evans, "The spherical harmonic discrete ordinate method for three-dimensional atmospheric radiative transfer," J. Atmos. Sci. 55, 429-446 (1998). [CrossRef]
  35. K. F. Evans, "SHDOMPPDA: A radiative transfer model for cloudy sky data assimilation". J. Atmos. Sci. 64, 3858-3868 (2007). [CrossRef]
  36. R. D. M. Garcia and C. E. Siewert, "The FN method for radiative transfer models that include polarization effects," J. Quant. Spectrosc. Radiat. Transfer 41, 117-145 (1989). [CrossRef]
  37. W. M. F. Wauben and J. W. Hovenier, "Polarized radiation of an atmosphere containing randomly-oriented spheroids," J. Quant. Spectrosc. Radiat. Transfer 47, 491-504 (1992). [CrossRef]
  38. R.B. Myneni, G. Asrar, and E. T. Kanemasu, "Light scattering in plant canopies: the method of Successive Orders of Scattering Approximations (SOSA)," Agric. For. Meteorol. 39, 1-12 (1987). [CrossRef]
  39. J. Lenoble, Atmospheric radiative transfer (A. Deepak Publishing 1993).
  40. M. Chami, R. Santer, and E. Dilligeard, "Radiative transfer model for the computation of radiance and polarization in an ocean-atmosphere system: polarization properties of suspended matter for remote sensing," Appl. Opt. 40, 2398-2416 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=ao-40-15-2398. [CrossRef]
  41. Q. Min and M. Duan, "A successive order of scattering model for solving vector radiative transfer in the atmosphere," J. Quant. Spectrosc. Radiat. Transfer 87, 243-259 (2004). [CrossRef]
  42. M. Duan and Q. Min, "A semi-analytic technique to speed up successive order of scattering model for optically thick media," J. Quant. Spectrosc. Radiat. Transfer 95, 21-32 (2005). [CrossRef]
  43. T. Greenwald, R. Bennartz, C. O’Dell, and A. Heidinger, "Fast computation of microwave radiances for data assimilation using the Successive Order of Scattering method," J. Appl. Meteorol. 44, 960-966 (2005). [CrossRef]
  44. A. K. Heidinger, C. O’Dell, R. Bennartz, and T. Greenwald, "The successive-order-of-interaction radiative transfer model. part I: model development," J. Appl. Meteorol. Climatol. 45, 1388-1402 (2005). [CrossRef]
  45. S. Y. Kotchenova, E. F. Vermote, R. Matarrese, and F. J. Klemm, Jr., "Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance," Appl. Opt. 45, 6762-6774 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ao-45-26-6762. [CrossRef] [PubMed]
  46. S. Y. Kotchenova and E. F. Vermote, "Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces," Appl. Opt. 46, 4455-4464 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=ao-46-20-4455. [CrossRef] [PubMed]
  47. J. Lenoble, M. Herman, J.L. Deuzé, B. Lafrance, R. Santer, D. Tanré, "A successive order of scattering code for solving the vector equation of transfer in the earths atmosphere with aerosols," J. Quant. Spectrosc. Radiat. Transfer 107, 479-507 (2007). [CrossRef]
  48. T. Suzuki, T. Nakajima, M. Tanaka, "Scaling algorithms for the calculation of solar radiative fluxes," J. Quant. Spectrosc. Radiat. Transfer 107, 458-469 (2007). [CrossRef]
  49. G. N. Plass and G. W. Kattawar, "Monte Carlo calculations of light scattering from clouds," Appl. Opt. 7, 415-419 (1968). [CrossRef] [PubMed]
  50. G. W. Kattawar and G. N. Plass, "Radiance and polarization of multiple scattered light from haze and clouds," Appl. Opt. 7, 1519-1527 (1968). [CrossRef] [PubMed]
  51. G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinjan, B. A. Kargin, and B. S. Elepov, the Monte Carlo Methods in Atmospheric Optics (Springer-Verlag, Berlin, 1980).
  52. G.W. Kattawar, editor, Selected Papers on Multiple Scattering in Plane Parallel Atmospheres and Oceans: Methods SPIE milestone seres, (MS42, Bellingham, WA, 1991).
  53. L. Roberti and C. Kummerow, "Monte Carlo calculations of polarized microwave radiation emerging from cloud structures," J. Geophy. Res. 104, 2093-2104 (1999). [CrossRef]
  54. H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, "Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations," Appl. Opt. 40, 400-412 (2001). [CrossRef]
  55. D. M. O’Brien, "Accelerated quasi Monte Carlo integration of the radiative transfer equation," J. Quant. Spectrosc. Radiat. Transfer 48, 41-59 (1992). [CrossRef]
  56. I3RC group, "I3RC Monte Carlo community model of 3D radiative transfer," http://i3rc.gsfc.nasa.gov/I3RCintro. html.
  57. G. W. Kattawar and C. N. Adams, "Stokes vector calculations of the submarine light field in an atmosphereocean with scattering according to a Rayleigh phase matrix: effect of interface refractive index on radiance and polarization," Limnol. Oceanogr. 34, 1453-1472 (1989). [CrossRef]
  58. H. R. Gordon, "Ship perturbation of irradiance measurements at sea. 1: Monte Carlo simulations," Appl. Opt. 24, 4172-4182 (1985). [CrossRef] [PubMed]
  59. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, "Comparison of numerical models for computing underwater light fields," Appl. Opt. 32, 7484-7504 (1993). [CrossRef] [PubMed]
  60. Z. Jin and K. Stamnes, "Radiative transfer in nonuniformly refracting layered media: atmosphere-ocean system," Appl. Opt. 33, 431-442 (1994). [CrossRef] [PubMed]
  61. B. Bulgarelli, V. B. Kisselev, and L. Roberti, "Radiative Transfer in the Atmosphere-Ocean System: The Finite-Element Method," Appl. Opt. 38, 1530-1542 (1999), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-38-9-1530. [CrossRef]
  62. P. N. Reinersman and K. L. Carder, "Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect," Appl. Opt. 34, 4453-4471 (1995). [CrossRef] [PubMed]
  63. Z. Jin, T. P. Charlock, K. Rutledge, K. Stamnes, and Y. Wang, "Analytical solution of radiative transfer in the coupled atmosphereocean system with a rough surface," Appl. Opt. 45, 7443-7455 (2006). [CrossRef] [PubMed]
  64. J. Chowdhary, B. Cairns, and L. D. Travis, "Contribution of water-leaving radiances to multiangle, multispectral polarimetric observations over the open ocean: bio-optical model results for case 1 waters," Appl. Opt. 45, 5542-5567 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ao-45-22-5542. [CrossRef] [PubMed]
  65. P. Zhai, G. W. Kattawar, and P. Yang, "Impulse response solution to the three-dimensional vector radiative transfer equation in atmosphere-ocean systems. I. Monte Carlo method," Appl. Opt. 47, 1037-1047 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ao-47-8-1037. [CrossRef] [PubMed]
  66. A. Morel, "Optical modeling of the upper ocean in relation to its biogenous matter content (Case I Waters)," J. Geophys. Res. 93, 10479-10768 (1988). [CrossRef]
  67. Concise Dictionary of Scientific Biography, (Scribner, New York, 1981), p. 643.Willebrord Snel von Royen used only one l in his last name.
  68. C. Cox and W. Munk, "Statistics of sea surface derived from sun glitter," J. Mar. Res. 13, 198-227 (1954).
  69. Y. Hu, D. Winker, P. Yang, B. Baum, L. Poole, and L. Vann, "Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study," J. Quant. Spectrosc. Radiat. Transfer 70, 569-579 (2001). [CrossRef]
  70. A. Hammad and S. Chapman, "The primary and secondary scattering of sun light in a plane-stratified atmosphere of uniform composition," Philos. Mag. 28, 99-110 (1939).
  71. J. Lenoble, editor. Radiative transfer in scattering and absorbing atmospheres: standard computational procedures (A. Deepak Publishing, 1985).
  72. I. Kuˇsˇcer and M. Ribariˇc, "Matrix formalism in the theory of diffusion of light," Opt. Acta 6, 42-51 (1959). [CrossRef]
  73. C. E. Siewert, "On the phase matrix basic to the scattering of polarized light," Astron. Astrophys. 109, 195-200 (1982).
  74. J. W. Hovenier and C. V. M. van der Mee, "Fundamental relationships relevant to the transfer of polarized light in a scattering atmosphere," Astron. Astrophys. 128, 1-16 (1983).
  75. I. M. Gel’fand, and Z. Y. Sapiro, "Representation of the group of rotations of 3-dimensional space and their applications," Amer. Math. Soc. Transl. 2, 207-316 (1956).
  76. E. P. Wigner, Group theoy and its application to the quantum mechanics of atomic spectra (Academic Press, New York, 1959).
  77. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge 2002).
  78. J. L. Deuzé, M. Herman, R. Santer, "Fourier series expansion of the transfer equation in the oceanatmosphere system," J. Quant. Spectrosc. Radiat. Transfer 41, 483-494 (1989). [CrossRef]
  79. C. V. M. Van der Mee, J.W. Hovenier, "Expansion coefficients in polarized light transfer," Astron. Astrophys. 228, 559-568 (1990).
  80. A. Kylling and K. Stamnes, "Efficient yet accurate solution of the linear transport equation in the presence of internal sources: the exponential-linear-in depth approximation," J. Comput. Phys. 102, 265-276 (1992). [CrossRef]
  81. L. C. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941). [CrossRef]
  82. T. J. Petzold, Volume Scattering Functions for Selected Ocean Waters (Scripps Institution of Oceanography, 1977).
  83. K. J. Voss and E. S. Fry, "Measurement of the Mueller matrix for ocean water," Appl. Opt. 23, 4427-4439 (1984). [CrossRef] [PubMed]
  84. M. Herman, J.L. Deuzé, A. Marchand, B. Roger, and P. Lallart, "Aerosol remote sensing from POLDER/ADEOS over the ocean: improved retrieval using a nonspherical particle model," J. Geophys. Res. 110, D10S02 (2005). [CrossRef]
  85. B. Cairns, E. E. Russell, J. D. LaVeigne, and P. M. W. Tennant. "Research scanning polarimeter and airborne usage for remote sensing of aerosols," Proc SPIE 5158, 33-44 (2003). [CrossRef]
  86. M. I. Mishchenko, B. Cairns, G. Kopp, C. F. Schueler, B. A. Fafaul, J. E. Hansen, R. J. Hooker, T. Itchkawich, H. B. Maring, and L. D. Travis, "Accurate monitoring of terrestrial aerosols and total solar irradiance: introducing the Glory Mission," Bull. Amer. Meteorol. Soc. 88, 677-691 (2007). [CrossRef]
  87. W. J. Wiscombe, "The Delta-M method: rapid yet accurate radiative flux calculations for strongly asymmetric phase functions," J. Atmos. Sci. 34, 1408-1422 (1977). [CrossRef]
  88. Y. -X. Hu, B. Wielicki, B. Lin, G. Gibson, S. -C. Tsay, K. Stamnes, and T. Wong, "™ -Fit: A fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least-squares fitting," J. Quant. Spectrosc. Radiat. Transfer 65, 681-690 (2000). [CrossRef]
  89. T. Nakajima and M. Tanaka, "Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation," J. Quant. Spectrosc. Radiat. Transfer 40, 51-69 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited