OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 4 — Feb. 16, 2009
  • pp: 2095–2110

Solid-state single photon sources: the nanowire antenna

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard  »View Author Affiliations

Optics Express, Vol. 17, Issue 4, pp. 2095-2110 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1328 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We design several single-photon-sources based on the emission of a quantum dot embedded in a semiconductor (GaAs) nanowire. Through various taper designs, we engineer the nanowire ends to realize efficient metallic-dielectric mirrors and to reduce the divergence of the far-field radiation diagram. Using fully-vectorial calculations and a comprehensive Fabry-Perot model, we show that various realistic nanowire geometries may act as nanoantennas (volume of ≈0.05 λ3) that assist funnelling the emitted photons into a single monomode channel. Typically, very high extraction efficiencies above 90% are predicted for a collection optics with a numerical aperture NA=0.85. In addition, since no frequency-selective effect is used in our design, this large efficiency is achieved over a remarkably broad spectral range, Δλ=70 nm at λ=950 nm.

© 2009 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(250.7270) Optoelectronics : Vertical emitting lasers
(050.6624) Diffraction and gratings : Subwavelength structures
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:

Original Manuscript: October 16, 2008
Revised Manuscript: January 28, 2009
Manuscript Accepted: January 28, 2009
Published: February 2, 2009

I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, "Solid-state single photon sources: the nanowire antenna," Opt. Express 17, 2095-2110 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Yokoyama and K. Ujihara, Spontaneous emission and laser oscillation in microcavities, (FL: CRC Press, 1995).
  2. C.H. Bennett, G. Brassard, and A. K. Eckert, "Quantum cryptography," Sci. Am. 267, 50-57 (1992). [CrossRef]
  3. E. Knill, R. Laflamme and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001). [CrossRef] [PubMed]
  4. J. M. Gérard, "Solid-State Cavity-Quantum Electrodynamics with Self-Assembled Quantum Dots," Single quantum dots: Fundamentals, applications and new concepts 90, 269-314 (2003).
  5. S.  Laurent, S.  Varoutsis, L.  Le Gratiet, A.  Lemaître, I.  Sagnes, F.  Raineri, A.  Levenson, I.  Robert-Philip, and I.  Abram, "Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity," Appl. Phys. Lett.  87, 163107 (2005). [CrossRef]
  6. E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, "A single-mode solid-state source of single photons based on isolated quantum dots in a micropillar," Physica E 13, 418-422 (2002).
  7. S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency single-photon source with polarization control," Nat. Photonics 1, 704-708 (2007). [CrossRef]
  8. D. J. P. Ellis, A. J. Bennett, S. J. Dewhurst, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, "Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz," New J. Phys. 10, 043035 (2008). [CrossRef]
  9. M. T. Borgström, V. Zwiller, E. Müller, and A. Imamoglu, "Optically Bright Quantum Dots in Single Nanowires," Nano Lett. 5, 1439-1443 (2005). [CrossRef] [PubMed]
  10. V. Zwiller, N. Akopian, M. van Weert, M. van Kouwen, U. Perinetti, L. Kouwenhouwen, R. Algra, J. Gomez Rivas, E. Bakkers, G. Patriarche, L. Liu, J. C. Harmand, Y. Kobayashi, and J. Motohisa, "Optics with single nanowires," C. R. Physique 9, 804-815 (2008). [CrossRef]
  11. N. Panev, A. I. Persson, N. Sköld, and L. Samuelson, "Sharp exciton emission from single quantum dots in GaAs nanowires," Appl. Phys. Lett. 83, 2238 (2003). [CrossRef]
  12. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, "Indistinguishable photons from a single-photon device," Nature 419, 595 (2002). [CrossRef]
  13. G. Brassard, N. Lutkenhaus, T. Mor, and B. C. Sanders, "Limitations on practical quantum cryptography," Phys. Rev. Lett. 85, 1330 (2000). [CrossRef] [PubMed]
  14. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity," Phys. Rev. Lett. 81, 1110-13 (1998). [CrossRef]
  15. A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Bohm, and J. J. Finley, "Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals," Phys. Rev. B 71, 241304(R) (2005). [CrossRef]
  16. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005). [CrossRef] [PubMed]
  17. W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, "Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities," Phys. Rev. Lett. 96, 117401 (2006). [CrossRef] [PubMed]
  18. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A Imamoglu, "A quantum dot single photon turnstile device," Science 290, 2282-84 (2000). [CrossRef] [PubMed]
  19. C. Santori, M. Pelton, Y. Dale, and E. Yamamoto, "Triggered single photons from a quantum dot," Phys. Rev. Lett. 86, 1502-05 (2001). [CrossRef] [PubMed]
  20. W. L. Barnes, G. Björk, J. M. Gérard, P. Jonsson, J. Wasey, P. Worthing, and V. Zwiller, "Solid-state single photon sources : light collection strategies," Eur. Phys. J. D 18, 197 (2002). [CrossRef]
  21. D. Englund, A. Faraon, B. Y. Zhang, Y. Yamamoto, and J. Vuckovic, "Generation and transfer of single photons on a photonic crystal chip," Opt. Express 15, 5550-5558 (2007). [CrossRef] [PubMed]
  22. C. Grillet, C. Monat, C. L. C. Smith, B. J. Eggleton, D. J. Moss, S. Frederik, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams, "Nanowire coupling to photonic crystal nanocavities for single photon sources," Opt. Express 15, 1267-1276 (2007). [CrossRef] [PubMed]
  23. S. H. Kim, S. K. Kim, and Y. H. Lee, "Vertical beaming of wavelength-scale photonic crystal resonators," Phys. Rev. B 73, 235117 (2006). [CrossRef]
  24. L. Ferrier, X. Letartre, P. Rojo-Romeo, E. Drouard, and P. Vicktorovitch, "Slow Bloch mode confinement in 2D photonic crystals for surface operating devices," Opt. Express 16, 3136-3145 (2008). [CrossRef] [PubMed]
  25. A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158 (2005). [CrossRef] [PubMed]
  26. G. Lecamp, P. Lalanne, and J. P. Hugonin, "Very large spontaneous emission β-factors in photonic crystal waveguides," Phys. Rev. Lett. 99, 023902 (2007). [CrossRef] [PubMed]
  27. V. S. C Manga Rao and S. Hughes, " Single quantum-dot Purcell factor and β-factor in photonic crystal waveguide," Phys. Rev. B 75, 205437 (2007). [CrossRef]
  28. T. Lund-Handsen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, "Experimental realization of highly-efficient broadband coupling of single quantum dots to a photonic crystal waveguide," Phys. Rev. Lett. 101, 113903 (2008). [CrossRef]
  29. P. J. Pauzauskie and P. Yang, "Nanowire photonics," Mater. Today 9, 36-45 (2006). [CrossRef]
  30. M. T. Hill, Y. S. Oei, E. Smalbrugge, Y. Zhu, T. De Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Nötzel, and M. K. Smit, "Lasing in metallic-coated nanocavities," Nat. Photonics 1, 589-594 (2007). [CrossRef]
  31. X. F. Duang, Y. Huang, R. Agarwal, and C. M. Lieber, "Single-nanowire electrically driven lasers," Nature 421, 241-245 (2003). [CrossRef]
  32. B. Z. Tian, X. L. Zheng, T. J. Kempa, Y. Fang, N. F. Yu, G.H. Yu, J. L. Huang, and C. M. Lieber, "Coaxial silicon nanowires as solar cells and nanoelectronic power sources," Nature 449, 885-888 (2007). [CrossRef] [PubMed]
  33. Y. K. Lize, E. C. Magi, V. G. Ta'eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, "Microstructured optical fiber photonic wires with subwavelength core diameter," Opt. Express 12, 3209-3217 (2004). [CrossRef] [PubMed]
  34. Y. Nowicki-Bringuier, R. Hahner, J. Claudon, G. Lecamp, P. Lalanne, and J.M. Gérard, "A novel high-efficiency single mode single photon source," Ann. Phys. 32, 151-154 (2007). [CrossRef]
  35. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically Driven Single-Cell Photonic Crystal Laser," Science 305, 1444-14447 (2004). [CrossRef] [PubMed]
  36. M. B. Ward, T. Farrow, P. See, Z. L. Yuan, O. Z. Karimov, A. J. Bennett, A. J. Shields, P. Atkinson, K. Cooper, and D. A. Ritchie, "Electrically driven telecommunication wavelength single-photon source," Appl. Phys. Lett. 90, 063512 (2007). [CrossRef]
  37. D. Y. Chu and S. T. Ho, "Spontaneous emission from excitons in cylindrical dielectric waveguides and the spontaneous-emission factor of microcavity ring laser," J. Opt. Soc. Am. B 10, 381-390 (1993). [CrossRef]
  38. Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman, "Efficient coupling of a semiconductor laser to an optical fiber by means of a tapered waveguide on silicon," Appl. Phys. Lett. 55, 2389 (1989). [CrossRef]
  39. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, "Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibers," Electron. Lett. 38,1669-70 (2002). [CrossRef]
  40. V. Almeida, R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-04 (2002). [CrossRef]
  41. N. Gregersen, T. R. Nielsen, J. Claudon, J. M. Gérard, and J. Mørk, "Controlling the emission profile of a nanowire with a conical taper," Opt. Lett. 33, 1693-1695 (2008). [CrossRef] [PubMed]
  42. R. Sun, M. Beals, A. Pomerene, J. Cheng, C. Hong, L. Kimerling, and J. Michel, "Impedance matching vertical optical waveguide couplers for dense high index contrast circuits," Opt. Express 16, 11682-11690 (2008). [CrossRef] [PubMed]
  43. I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, "Efficient photonic mirrors for semiconductor nanowires," Opt. Lett. 33, 2635-37 (2008). [CrossRef] [PubMed]
  44. C. Simon, Y. M. Niquet, X. Caillet, J. Eymery, J. P. Poizat, and J. M. Gérard, "Quantum communications with quantum dot spins," Phys. Rev. B 75, 081302(R) (2007). [CrossRef]
  45. Y. M. Niquet and D. C. Mojica, "Quantum dots and tunnel barriers in InAs/InP nanowire heterostructures: electronic and optical properties," Phys. Rev. B 77, 115316 (2008). [CrossRef]
  46. J. P. Hugonin and P. Lalanne, "Perfectly-matched-layers as nonlinear coordinate transforms: a generalized formalization," J. Opt. Soc. Am. A. 22, 1844-1849 (2005). [CrossRef]
  47. G. Lecamp, J. P. Hugonin, and P. Lalanne, "Theoretical and computational concepts for periodic optical waveguides," Opt. Express 15, 11042-60 (2007). [CrossRef] [PubMed]
  48. N. Bonod, E. Popov, and M. Nevière, "Differential theory of diffraction by finite cylindrical objects," J. Opt. Soc. Am. A. 22, 481-490 (2005). [CrossRef]
  49. A. V. Maslov and C. Z. Ning, "Far-field emission of a semiconductor nanowire laser," Opt. Lett. 29, 572-574 (2004). [CrossRef] [PubMed]
  50. G. Lecamp, J. P. Hugonin, P. Lalanne, R. Braive, S. Varoutsis, S. Laurent, A. Lemaître, I. Sagnes, G. Patriarche, I. Robert-Philip, and I. Abram, " Submicron-diameter semiconductor pillar microcavities with very high quality factors," Appl. Phys. Lett. 90, 091120 (2007). [CrossRef]
  51. A. W. Snyder and J. D. Love, Optical Waveguide theory, (Chapman and Hall, NY, 1983).
  52. Z. Y. Li and K. M. Ho, "Bloch mode reflection and lasing threshold in semiconductor nanowire laser arrays," Phys. Rev. B 71, 045315 (2005). [CrossRef]
  53. A. V. Maslov, M. I. Bukanov, and C. Z. Ning, "Distribution of optical emission between guided modes and free space in a semiconductor nanowire," J. Appl. Phys. 99, 024314 (2006). [CrossRef]
  54. L. Chen and E. Towe, "Nanowire lasers with distributed-Bragg-reflector mirrors," Appl. Phys. Lett. 89, 053125 (2006). [CrossRef]
  55. A. Dousse, L. Lanco, J. Suffczynski, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, "Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography," Phys. Rev. Lett. 101, 267404 (2008). [CrossRef]
  56. W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, "Radiatively limited dephasing in InAs quantum dots," Phys. Rev. B 70, 033301 (2004). [CrossRef]
  57. I. Favero, G. Cassabois, A. Jankovic, R. Ferreira, D. Darson, C. Voisin, C. Delalande, P. Roussignol, B. Gerardot, P. M. Petroff, and J. M. Gérard, "Giant optical anisotropy in a single quantum dot in a very dilute quantum dot ensemble," Appl. Phys. Lett. 86, 041904 (2005). [CrossRef]
  58. K. Sebald, P. Michler, T. Passow, D. Hommel, G. Bacher, and A. Forchel, "Single photon emission of CdSe quantum dots at temperatures up to 200K," Appl. Phys. Lett. 81, 2920 (2002). [CrossRef]
  59. S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, "A gallium nitride single-photon source operating at 200K," Nature Mater. 5, 887 (2006). [CrossRef]
  60. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, "Stable solid-state source of single photons," Phys. Rev. Lett. 89, 290 (2000). [CrossRef]
  61. R. Brouri, A. Beveratos, J. P. Poizat, and P. Grangier, "Photon antibunching in the fluorescence of individual color centers in diamond," Opt. Lett. 25, 1294 (2000). [CrossRef]
  62. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-09 (2005). [CrossRef] [PubMed]
  63. Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, and M. Käll, "Optical antennas based on coupled nanoholes in thin metal films," Nature Phys.  3, 884-889 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited