OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 4 — Feb. 16, 2009
  • pp: 2143–2148

Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials

Aleksandr Ovsianikov, Xiao Shizhou, Maria Farsari, Maria Vamvakaki, Costas Fotakis, and Boris N. Chichkov  »View Author Affiliations


Optics Express, Vol. 17, Issue 4, pp. 2143-2148 (2009)
http://dx.doi.org/10.1364/OE.17.002143


View Full Text Article

Enhanced HTML    Acrobat PDF (6325 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An investigation of the shrinking behaviour of a zirconium-based sol-gel composite micro-structured by two-photon polymerization is presented and a simple, straightforward methodology allowing the evaluation of shrinkage is suggested. It is shown that volume reduction is directly related to the average laser power (irradiation dose) used for the microfabrication and becomes a critical issue near the polymerization threshold. It is demonstrated that this shrinkage can be employed beneficially to improve the structural resolution. This is demonstrated by the presence of stopbands in the photonic crystal nanostructures fabricated with controlled volume reduction. Well above the polymerization threshold, the studied material exhibits remarkably low shrinkage. Therefore, no additional effort for the pre-compensation of distortion and for the improvement of structural stability is required.

© 2009 Optical Society of America

OCIS Codes
(160.6060) Materials : Solgel
(350.3850) Other areas of optics : Materials processing
(050.5298) Diffraction and gratings : Photonic crystals
(160.5335) Materials : Photosensitive materials

ToC Category:
Materials

History
Original Manuscript: November 4, 2008
Revised Manuscript: January 23, 2009
Manuscript Accepted: January 25, 2009
Published: February 2, 2009

Citation
Aleksandr Ovsianikov, Xiao Shizhou, Maria Farsari, Maria Vamvakaki, Costas Fotakis, and Boris N. Chichkov, "Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials," Opt. Express 17, 2143-2148 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-4-2143


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997). [CrossRef] [PubMed]
  2. H-B. Sun and S. Kawata, NMR, 3D analysis, photopolymerization Eds N. Fatkullin (Springer 2004), pp. 169-273.
  3. A. Ovsianikov, S. Passinger, R. Houbertz, and B. N. Chichkov, Laser Ablation and its Applications Eds. Claude R. Phipps, (Springer Series in Optical Sciences 2006), pp. 129-167.
  4. S. Yokoyama, T. Nakahama, H. Miki, and S. Mashiko, "Two-photon-induced polymerization in a laser gain medium for optical microstructure," Appl. Phys. Lett. 82, 3221-3223 (2003) [CrossRef]
  5. M. Deubel, G. v. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nature Materials 3, 444-447 (2004). [CrossRef] [PubMed]
  6. V. Dinka, E. Kasotakis, J. Catherine, A. Mourka, A. Ranella, A. Ovsianikov, B. N. Chichkov, M. Farsari, A. Mitraki, and C. Fotakis, "Directed three-dimensional patterning of self-assembled peptide fibrils," Nano Lett. 8, 538 - 543 (2008). [CrossRef]
  7. A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, "Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials," J. Tissue Engin. Regen. Med. 1, 443 - 449 (2008). [CrossRef]
  8. S. Juodkazis, V. Mizeikis, K-K. Seet, M. Miwa, and H. Misawa, "Two-photon lithography of nanorods in SU-8 photoresist," Nanotechnology 16, 846-848 (2005). [CrossRef]
  9. J-F- Xing, X-Z. Dong, W-Q. Chen, X.-M. Duana, N. Takeyasu, T. Tanaka, and S. Kawata, "Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency," Appl. Phys. Lett. 90, 131106-1 - 131106-3 (2007). [CrossRef]
  10. W. Haske, V. W. Chen, J. M. Hales, W. Dong, S. Barlow, S. R. Marder, and J. W. Perry, "65 nm feature sizes using visible wavelength 3-D multiphoton lithography," Opt. Express 15, 3426-3436 (2007). [CrossRef] [PubMed]
  11. Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, "Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization," Nanotechnology 19, 055303, 5pp (2008). [CrossRef] [PubMed]
  12. A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, "Two-photon polymerization of hybrid sol-gel materials for photonics Applications," Laser Chemistry, vol. 2008, Article ID 493059, 7 pages, 2008. [CrossRef]
  13. J. Serbin, A. Ovsianikov, and B. Chichkov, "Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties," Opt. Express 12, 5221-5228 (2004). [CrossRef] [PubMed]
  14. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, "Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics," Opt. Lett. 28, 301-303 (2003). [CrossRef] [PubMed]
  15. G. von Freymann, T. Chan, S. John, V. Kitaev, G. A. Ozin, M. Deubel, and M. Wegener, "Sub-nanometer precision modification of the optical properties of three-dimensional polymer-based photonic crystals," Photon. Nanostructures 2, 191-198 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited