OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 4 — Feb. 16, 2009
  • pp: 2149–2165

Optical design of the proposed Australian International Gravitational Observatory

Pablo Barriga, Muzammil A. Arain, Guido Mueller, Chunnong Zhao, and David G. Blair  »View Author Affiliations

Optics Express, Vol. 17, Issue 4, pp. 2149-2165 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (207 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Marginally stable power recycling cavities are being used by nearly all interferometric gravitational wave detectors. With stability factors very close to unity the frequency separation of the higher order optical modes is smaller than the cavity bandwidth. As a consequence these higher order modes will resonate inside the cavity distorting the spatial mode of the interferometer control sidebands. Without losing generality we study and compare two designs of stable power recycling cavities for the proposed 5 kilometer long Australian International Gravitational Observatory (AIGO), a high power advanced interferometric gravitational wave detector. The length of various optical cavities that form the interferometer and the modulation frequencies that generate the control sidebands are also selected.

© 2009 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(350.4600) Other areas of optics : Optical engineering

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: November 13, 2008
Revised Manuscript: December 13, 2008
Manuscript Accepted: December 17, 2008
Published: February 2, 2009

Pablo Barriga, Muzammil A. Arain, Guido Mueller, Chunnong Zhao, and David G. Blair, "Optical design of the proposed Australian International Gravitational Observatory," Opt. Express 17, 2149-2165 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. C. Searle, S. M. Scott, and D. E. McClelland, "Network sensitivity to geographical configuration," Class. Quantum Grav. 19, 1465-1470 (2002). [CrossRef]
  2. L. Wen, "Network Analysis of Gravitational Waves," LIGO Presentation, G050508-00-Z (2005).
  3. E. Gustafson, D. Shoemaker, K. Strain, and R. Weiss, "LSC White Paper on Detector Research and Development," LIGO Technical Document, T990080-00-D (1999).
  4. K. Kuroda, M. Ohashi, S. Miyoki, D. Tatsumi, S. Sato, H. Ishizuka, M. Fujimoto, S. Kawamura, R. Takahashi, T. Yamazaki, K. Arai, M. Fukushima, K. Waseda, S. Telada, A. Ueda, T. Shintomi, A. Yamamoto, T. Suzuki, Y. Saito, T. Haruyama, N. Sato, K. Tsubono, K. Kawabe, M. Ando, K. Ueda, H. Yoneda, M. Musha, N. Mio, S. Moriwaki, A. Araya, N. Kanda, M. E. Tobar, "Large-scale cryogenic gravitational wave telescope," Int. J. Mod. Phys. D 8, 557-579 (1999). [CrossRef]
  5. R. Flaminio, A. Freise, A. Gennai, P. Hello, P. La Penna, G. Losurdo, H. Lueck, N. Man, A. Masserot, B. Mours, M. Punturo, A. Spallacci, A. Vicer ´ e, "Advanced VIRGO White Paper," VIR-NOT-DIR-1390-304, (2005).
  6. D. G. Blair, P. Barriga, A. F. Brooks, P. Charlton, D. Coward, J. C. Dumas, Y. Fan, D. Galloway, S. Gras, D. J. Hosken, E. Howell, S. Hughes, L. Ju, D. E. McClelland, A. Melatos, H. Miao, J. Munch, S. M. Scott, B. J. J. Slagmolen, P. J. Veitch, L. Wen, J. K. Webb, A. Wolley, Z. Yan, and C. Zhao, "The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO," J. Phys. Conf. Ser. 122, 012001, (2008). [CrossRef]
  7. R. W. P. Drever, "Interferometric detectors for gravitational radiation," in Gravitational Radiation, NATO Advanced Physics Institute, Les Houches, edited by N. Deruelle and T. Piran (North-Holland, Amsterdam, 1983), pp. 321-338.
  8. A. M. Gretarsson, E. D’Ambrosio, V. Frolov, B. O’Reilly, and P. K. Fritschel, "Effects of mode degeneracy in the LIGO Livingstone Observatory recycling cavity," J. Opt. Soc. Am. B 24, 2821-2828 (2007). [CrossRef]
  9. R. Lawrence, M. Zucker, P. Fritschel, P. Marfuta, and D. Shoemaker, "Adaptive thermal compensation of test masses in advanced LIGO," Class. Quantum Grav. 19, 1803-1812 (2002). [CrossRef]
  10. G. Mueller, "Stable Recycling Cavities for Advanced LIGO," LIGO Presentation, G050423-00-Z (2005).
  11. M. A. Arain, "Thermal Compensation in Stable Recycling Cavity," LSC Meeting Presentation, G060155-00-Z (2006).
  12. M. A. Arain, A. Lucianetti, R. Martin, G. Mueller, V. Quetschke, D. Reitze, D. Tanner, L. Williams, and W. Wu, "Advanced LIGO Input Optics Subsystem Preliminary Design Document," LIGO Technical Document, T060269-02-D (2007).
  13. Y. Pan, "Optimal degeneracy for the signal-recycling cavity in advanced LIGO," arXiv:gr-qc/0608128v1 (2006).
  14. M. A. Arain and G. Mueller, "Design of the Advanced LIGO recycling cavities," Opt. Express 16, 10018-10032 (2008). [CrossRef] [PubMed]
  15. R. Abbott, R. Adhikari, S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, S. Waldman, "AdvLIGO Interferometer Sensing and Control Conceptual Design," LIGO Technical Document, T070247-01-I (2008).
  16. E. Chin, J. C. Dumas, C. Zhao, D. G. Blair, "AIGO High Performance Compact Vibration Isolation System," J. Phys. Conf. Ser. 32, 111 - 116 (2006). [CrossRef]
  17. B. J. Meers, "Recycling in laser-interferometric gravitational-wave detectors," Phys. Rev. D 38, 2317-2326 (1988). [CrossRef]
  18. J. Mizuno, K. A. Strain, P. G. Nelson, J. M. Chen, R. Schilling, A. Rüdiger, W.  Winkler, K. Danzmann, "Resonant sideband extraction: a new configuration for interferometric gravitational wave detector," Phys. Lett. A 175, 273-276 (1993). [CrossRef]
  19. K. A. Strain, G. Mueller, T. Delker, D. H. Reitze, D. B. Tanner, J. E. Mason, P. A. Willems, D. A. Shaddock, M. B. Gray, C. Mow-Lowry, and D. E. McClelland, "Sensing and Control in Dual-Recycling Laser Interferometer Gravitational-Wave Detectors," Appl. Opt. 42, 1244-1256 (2003). [CrossRef] [PubMed]
  20. G. Mueller, T. Delker, D. B. Tanner, and D. Reitze, "Dual-Recycled Cavity-Enhanced Michelson Interferometer for Gravitational-Wave Detection," Appl. Opt. 42, 1257-1268 (2003). [CrossRef]
  21. J. E. Mason, and P. A. Willems, "Signal Extraction and Optical Design for an Advanced Gravitational-Wave Interferometer," Appl. Opt. 42, 1269-1282 (2003). [CrossRef] [PubMed]
  22. D. A. Shaddock, M. B. Gray, and D. E. McClelland, "Power-Recycled Michelson Interferometer with Resonant Sideband Extraction," Appl. Opt. 42, 1283-1295 (2003). [CrossRef] [PubMed]
  23. O. Miyakawa, S. Kawamura, B. Abbott, R. Bork, P. Fritschel, L. Goggin, J. Heefner, A. Ivanov, F. Kawazoe, C. Mow-Lowry, A. Ourjoumtsev, S. Sakata, M. Smith, K. A. Strain, R. Taylor, D. Ugolini, S. Vass, R. Ward, A. Weinstein, "Sensing and control of the advanced LIGO optical configuration," Proc. SPIE 5500, 92-104 (2004). [CrossRef]
  24. Y. Levin, "Internal thermal noise in the LIGO test masses: A direct approach," Phys. Rev. D 57, 659-663 (1998). [CrossRef]
  25. A. E. Siegman, Lasers, University Science Books, Sausalito CA, (1986).
  26. L. G. Gouy, "Sur une propriété nouvelle des ondes lumineuses," C. R. Acad. Sci. Paris 110, 1251-1253 (1890).
  27. H. Kogelnik and T. Li, "Laser Beams and Resonators," Appl. Opt. 5, 1550-1567 (1966). [CrossRef] [PubMed]
  28. R. C. Lawrence, "Active Wavefront Correction in Laser Interferometric Gravitational Wave Detectors," PhD Thesis Department of Physics, Massachusetts Institute of Technology, (2003).
  29. J. Degallaix, "Compensation of Strong Thermal Lensing in Advanced Interferometric Gravitational Waves Detectors," PhD Thesis School of Physics, The University of Western Australia, (2006).
  30. D. Ottaway, Massachusetts Institute of Technology, internal communication, (2006).
  31. G. Mueller, "Parametric instabilities and the geometry of the recycling cavities," LIGO Presentation, G070441-00-R (2007).
  32. V. B. Braginsky, S. E. Strigin, S. P. Vyatchanin, "Parametric oscillatory instability in Fabry-Perot interferometer," Phys. Lett. A 287, 331-338, (2001). [CrossRef]
  33. L. Ju, S. Gras, C. Zhao, J. Degallaix, D. G. Blair, "Multiple modes contributions to parametric instabilities in advanced laser ineterferometer gravitational wave detectors," Phys. Lett. A 354, 360-365, (2006). [CrossRef]
  34. W. Winkler, K. Danzmann, A. Rüdiger, R. Schilling, "Heating by optical absorption and the performance of interferometric gravitational-wave detctor," Phys. Rev. A 44, 7022-7036 (1991). [CrossRef] [PubMed]
  35. P. Willems, "Thermal Compensation Experience in LIGO," LIGO Presentation, G070339-00-Z, (2007).
  36. Suprasil 3001 and 3002 Data Sheet, http://www.optics.heraeus-quarzglas.com/
  37. M. Evans, S. Ballmer, M. Fejer, P. Fritschel, G. Harry, G. Orgin, "Thermo-optic noise in coated mirrors for high-precision optical measurements," arXiv:0807.4774v1 [gr-qc], (2008).
  38. B. J. Meers and K. Strain, "Modulation, signal, and quantum noise in interferometers," Phys. Rev. A 44, 4693-4703 (1991). [CrossRef] [PubMed]
  39. L. Schnupp, "Internal modulation schemes," presented at the European Collaboration Meeting on Interferometric Detection of Gravitational Waves, Sorrento (1988).
  40. K. Somiya, P. Beyersdorf, K. Arai, S. Sato, S. Kawamura, O. Miyakawa, F. Kawazoe, S. Sakata, A. Sekido, and N. Mio, "Development of a frequency-detuned interferometer as a prototype experiment for next-generation gravitational-wave detectors," Appl. Opt. 44, 3179-3191 (2005). [CrossRef] [PubMed]
  41. C. Cutler and K. Thorne, "An overview of gravitational-wave sources," arXiv:gr-qc/0204090v1, (2002).
  42. J. Mizuno, "Comparison of optical configurations for laser-interferometric gravitational-wave detectors," PhD Thesis Max Planck Institut für Quantenoptik, (1995).
  43. J. E. Mason,"Signal Extraction and Optical Design for an Advanced Gravitational Wave Interferometer," PhD Thesis California Institute of Technology, (2001).
  44. S. Gras, D. G. Blair, L. Ju, "Test mass ring dampers with minimum thermal noise," Phys. Lett. A 372, 1348-1356 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited